Suppr超能文献

厚的、含水有机材料的X射线和电子显微镜检查的相对优点及限制因素

Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

作者信息

Du Ming, Jacobsen Chris

机构信息

Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA.

Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439, USA; Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston IL 60208, USA.

出版信息

Ultramicroscopy. 2018 Jan;184(Pt A):293-309. doi: 10.1016/j.ultramic.2017.10.003. Epub 2017 Oct 7.

Abstract

Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.

摘要

电子显微镜和X射线显微镜能让人们以远超可见光显微镜的分辨率对水合材料的完整、未标记结构进行成像。然而,这两种方法都涉及电离辐射,因此辐射损伤必须被视为成像的限制因素之一。借鉴早期的工作,我们在此描述一种统一的方法,用于估计X射线显微镜和电子显微镜中的图像对比度(进而估计所需的曝光量和相应的辐射剂量)。这种方法考虑了诸如多重散射和非弹性散射等因素,以及(在电子显微镜中)使用能量过滤器来获取所谓的“零损失”图像。不出所料,结果表明,对于厚度小于约1微米的标本(如用于研究大分子、病毒、细菌和古细菌以及薄切片材料),电子显微镜提供的剂量更低,而对于成像较厚的标本,如整个真核细胞、厚切片组织和器官,X射线显微镜具有更优越的特性。所需的辐射剂量与所需的空间分辨率密切相关,这使人们能够了解活体和冷冻水合标本成像的限制。最后,我们考虑了限制对较厚材料进行X射线显微镜成像的因素,表明如果能找到合适的图像重建方法,像整个小鼠大脑这么厚的标本也能用X射线显微镜成像,且不会有明显的图像退化。

相似文献

3
Soft x-ray microscopy.软X射线显微镜术
Trends Cell Biol. 1999 Feb;9(2):44-7. doi: 10.1016/s0962-8924(98)01424-x.
5
Soft X-ray contact microscopy of biological materials.生物材料的软X射线接触显微镜检查
Electron Microsc Rev. 1991;4(2):269-92. doi: 10.1016/0892-0354(91)90006-x.

引用本文的文献

10
Upscaling X-ray nanoimaging to macroscopic specimens.将X射线纳米成像扩展至宏观标本。
J Appl Crystallogr. 2021 Feb 19;54(Pt 2):386-401. doi: 10.1107/S1600576721000194. eCollection 2021 Apr 1.

本文引用的文献

5
Coherent diffractive imaging: towards achieving atomic resolution.相干衍射成像:迈向实现原子分辨率
J Synchrotron Radiat. 2015 Nov;22(6):1498-508. doi: 10.1107/S1600577515017336. Epub 2015 Oct 3.
7
SASBDB, a repository for biological small-angle scattering data.SASBDB,一个生物小角散射数据存储库。
Nucleic Acids Res. 2015 Jan;43(Database issue):D357-63. doi: 10.1093/nar/gku1047. Epub 2014 Oct 28.
8
Biochemistry. The resolution revolution.生物化学。分辨率革命。
Science. 2014 Mar 28;343(6178):1443-4. doi: 10.1126/science.1251652.
9
On the evolution and relative merits of hard X-ray phase-contrast imaging methods.硬 X 射线相衬成像方法的演变及其优缺点。
Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130021. doi: 10.1098/rsta.2013.0021. Print 2014 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验