文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用神经影像学预测年龄:创新的大脑老化生物标志物。

Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

机构信息

Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.

Structural Brain Mapping Group, University Hospital Jena, Jena, Germany.

出版信息

Trends Neurosci. 2017 Dec;40(12):681-690. doi: 10.1016/j.tins.2017.10.001. Epub 2017 Oct 23.


DOI:10.1016/j.tins.2017.10.001
PMID:29074032
Abstract

The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods.

摘要

随着年龄的增长,大脑会发生变化,这些变化与功能恶化和神经退行性疾病有关。我们必须更好地了解大脑老化过程中的个体差异;因此,已经开发出了用于对大脑老化进行个体化预测的技术。我们提出了支持使用基于神经影像学的“大脑年龄”作为个体大脑健康的生物标志物的证据。越来越多的研究表明,大脑疾病或身体状况不佳如何对大脑年龄产生负面影响。重要的是,最近的证据表明,大脑看起来更“老”与更先进的生理和认知老化以及死亡风险有关。我们讨论了围绕大脑年龄的争议,并强调了新兴趋势,例如使用多模态神经影像学和采用“深度学习”方法。

相似文献

[1]
Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

Trends Neurosci. 2017-10-23

[2]
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.

Neuroimage. 2017-7-29

[3]
MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide.

Brain. 2020-7-1

[4]
Brain age predicts mortality.

Mol Psychiatry. 2017-4-25

[5]
Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases.

Bioessays. 2018-6-8

[6]
Brain age and other bodily 'ages': implications for neuropsychiatry.

Mol Psychiatry. 2018-6-11

[7]
MRI-derived brain age as a biomarker of ageing in rats: validation using a healthy lifestyle intervention.

Neurobiol Aging. 2022-1

[8]
Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases.

Clin EEG Neurosci. 2019-1

[9]
Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain.

Neuroimage. 2022-11-1

[10]
Editorial: Brain Imaging and Automatic Analysis in Neurological and Psychiatric Diseases - Part I.

CNS Neurol Disord Drug Targets. 2017

引用本文的文献

[1]
Consortium profile: the methylation, imaging and NeuroDevelopment (MIND) consortium.

Mol Psychiatry. 2025-9-6

[2]
Current challenges and future directions for brain age prediction in children and adolescents.

Nat Commun. 2025-8-20

[3]
Contributions of lifestyle, education, and cardiovascular risk factors to the brain age gap.

Aging Brain. 2025-8-11

[4]
Unraveling Microstructural and Macrostructural Brain Age Dynamics in Multiple Sclerosis.

Neurol Neuroimmunol Neuroinflamm. 2025-9

[5]
Characterising ongoing brain aging and baseline effects from cross-sectional data.

Imaging Neurosci (Camb). 2025-6-17

[6]
BrainAgeNeXt: Advancing brain age modeling for individuals with multiple sclerosis.

Imaging Neurosci (Camb). 2025-2-25

[7]
Second-order instantaneous causal analysis of spontaneous MEG.

Imaging Neurosci (Camb). 2025-4-25

[8]
Reliability of task-based fMRI in the dorsal horn of the human spinal cord.

Imaging Neurosci (Camb). 2024-8-22

[9]
Do try this at home: Age prediction from sleep and meditation with large-scale low-cost mobile EEG.

Imaging Neurosci (Camb). 2024-6-21

[10]
Diffusion deep learning for brain age prediction and longitudinal tracking in children through adulthood.

Imaging Neurosci (Camb). 2024-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索