Suppr超能文献

脑龄和其他身体“年龄”:对神经精神病学的影响。

Brain age and other bodily 'ages': implications for neuropsychiatry.

机构信息

Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, UK.

出版信息

Mol Psychiatry. 2019 Feb;24(2):266-281. doi: 10.1038/s41380-018-0098-1. Epub 2018 Jun 11.

Abstract

As our brains age, we tend to experience cognitive decline and are at greater risk of neurodegenerative disease and dementia. Symptoms of chronic neuropsychiatric diseases are also exacerbated during ageing. However, the ageing process does not affect people uniformly; nor, in fact, does the ageing process appear to be uniform even within an individual. Here, we outline recent neuroimaging research into brain ageing and the use of other bodily ageing biomarkers, including telomere length, the epigenetic clock, and grip strength. Some of these techniques, using statistical approaches, have the ability to predict chronological age in healthy people. Moreover, they are now being applied to neurological and psychiatric disease groups to provide insights into how these diseases interact with the ageing process and to deliver individualised predictions about future brain and body health. We discuss the importance of integrating different types of biological measurements, from both the brain and the rest of the body, to build more comprehensive models of the biological ageing process. Finally, we propose seven steps for the field of brain-ageing research to take in coming years. This will help us reach the long-term goal of developing clinically applicable statistical models of biological processes to measure, track and predict brain and body health in ageing and disease.

摘要

随着年龄的增长,我们的大脑往往会出现认知能力下降的情况,患神经退行性疾病和痴呆症的风险也会增加。慢性神经精神疾病的症状在衰老过程中也会加剧。然而,衰老过程并不会均匀地影响每个人;事实上,即使在个体内部,衰老过程似乎也不是均匀的。在这里,我们概述了最近关于大脑衰老的神经影像学研究,以及其他身体衰老生物标志物的应用,包括端粒长度、表观遗传时钟和握力。其中一些技术使用统计方法,有能力预测健康人群的实际年龄。此外,它们现在正在被应用于神经和精神疾病群体,以提供这些疾病与衰老过程相互作用的见解,并对未来的大脑和身体健康进行个性化预测。我们讨论了整合来自大脑和身体其他部位的不同类型生物测量数据的重要性,以建立更全面的生物衰老过程模型。最后,我们为未来几年的大脑衰老研究领域提出了七个步骤。这将有助于我们实现长期目标,即开发出临床适用的生物过程统计模型,以衡量、跟踪和预测衰老和疾病过程中的大脑和身体健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80bb/6344374/4ab2e84ee39a/41380_2018_98_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验