Program in Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA.
Program in Cellular and Molecular Physiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA.
J Biol Chem. 2020 Jul 10;295(28):9433-9444. doi: 10.1074/jbc.RA120.013223. Epub 2020 May 14.
The vacuolar H-ATPase (V-ATPase) is an ATP-dependent proton pump that is essential for cellular homeostasis. V-ATPase activity is controlled by the regulated assembly of the enzyme from its component V and V domains. We previously reported that amino acid starvation rapidly increases V-ATPase assembly and activity in mammalian lysosomes, but the signaling pathways controlling this effect are unknown. In testing inhibitors of pathways important for controlling cellular metabolism, we found here that the cAMP-dependent protein kinase (PKA) inhibitor H89 increases lysosomal V-ATPase activity and blocks any further change upon starvation. The AMP-activated protein kinase (AMPK) inhibitor dorsomorphin decreased lysosomal V-ATPase activity and also blocked any increase upon starvation. However, CRISPR-mediated gene editing revealed that PKA and AMPK are not required for the starvation-dependent increase in lysosomal V-ATPase activity, indicating that H89 and dorsomorphin modify V-ATPase activity through other cellular targets. We next found that the AKT Ser/Thr kinase (AKT) inhibitor MK2206 blocks the starvation-dependent increase in lysosomal V-ATPase activity without altering basal activity. Expression of AKT1 or AKT3, but not AKT2, was required for increased lysosomal V-ATPase activity in response to amino acid starvation in mouse fibroblasts. Finally, HEK293T cells expressing only AKT1 responded normally to starvation, whereas cells expressing only AKT2 displayed a significantly reduced increase in V-ATPase activity and assembly upon starvation. These results show that AKT is required for controlling the rapid response of lysosomal V-ATPase activity to changes in amino acid availability and that this response depends on specific AKT isoforms.
液泡型 H+-ATP 酶(V-ATPase)是一种依赖于 ATP 的质子泵,对细胞内稳态至关重要。V-ATPase 的活性受酶的 V 区和 V 区组件的调节组装控制。我们之前报道过,氨基酸饥饿会迅速增加哺乳动物溶酶体中的 V-ATPase 组装和活性,但控制这种效应的信号通路尚不清楚。在测试对控制细胞代谢很重要的途径的抑制剂时,我们在这里发现,cAMP 依赖性蛋白激酶(PKA)抑制剂 H89 增加溶酶体 V-ATPase 活性,并阻止饥饿时的进一步变化。AMP 激活的蛋白激酶(AMPK)抑制剂 dorsomorphin 降低溶酶体 V-ATPase 活性,并阻止饥饿时的任何增加。然而,CRISPR 介导的基因编辑表明,PKA 和 AMPK 不是溶酶体 V-ATPase 活性在饥饿依赖增加所必需的,这表明 H89 和 dorsomorphin 通过其他细胞靶点来修饰 V-ATPase 活性。我们接下来发现,AKT 丝氨酸/苏氨酸激酶(AKT)抑制剂 MK2206 阻止溶酶体 V-ATPase 活性在饥饿依赖增加而不改变基础活性。在氨基酸饥饿时,AKT1 或 AKT3 的表达,但不是 AKT2 的表达,对于鼠成纤维细胞中溶酶体 V-ATPase 活性的增加是必需的。最后,仅表达 AKT1 的 HEK293T 细胞对饥饿正常反应,而仅表达 AKT2 的细胞在饥饿时 V-ATPase 活性和组装的增加明显减少。这些结果表明 AKT 是控制溶酶体 V-ATPase 活性对氨基酸可用性变化的快速反应所必需的,并且这种反应取决于特定的 AKT 同工型。