Suppr超能文献

CTC 识别多种基因组位点的分子机制。

Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites.

机构信息

Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Cell Res. 2017 Nov;27(11):1365-1377. doi: 10.1038/cr.2017.131. Epub 2017 Oct 27.

Abstract

CTCF, a conserved 3D genome architecture protein, determines proper genome-wide chromatin looping interactions through directional binding to specific sequence elements of four modules within numerous CTCF-binding sites (CBSs) by its 11 zinc fingers (ZFs). Here, we report four crystal structures of human CTCF in complex with CBSs of the protocadherin (Pcdh) clusters. We show that directional CTCF binding to cognate CBSs of the Pcdh enhancers and promoters is achieved through inserting its ZF3, ZFs 4-7, and ZFs 9-11 into the major groove along CBSs, resulting in a sequence-specific recognition of module 4, modules 3 and 2, and module 1, respectively; and ZF8 serves as a spacer element for variable distances between modules 1 and 2. In addition, the base contact with the asymmetric "A" in the central position of modules 2-3, is essential for directional recognition of the CBSs with symmetric core sequences but lacking module 1. Furthermore, CTCF tolerates base changes at specific positions within the degenerated CBS sequences, permitting genome-wide CTCF binding to a diverse range of CBSs. Together, these complex structures provide important insights into the molecular mechanisms for the directionality, diversity, flexibility, dynamics, and conservation of multivalent CTCF binding to its cognate sites across the entire human genome.

摘要

CTCF 是一种保守的三维基因组结构蛋白,通过其 11 个锌指(ZF)与大量 CTCF 结合位点(CBS)内的四个模块的特定序列元件定向结合,决定了全基因组染色质环相互作用的适当性。在这里,我们报告了人类 CTCF 与原钙粘蛋白(Pcdh)簇的 CBS 复合物的四个晶体结构。我们表明,通过将其 ZF3、ZF4-7 和 ZF9-11 插入 CBS 的大沟中,CTCF 对 Pcdh 增强子和启动子的同源 CBS 的定向结合实现了,从而分别实现了对模块 4、模块 3 和模块 2 以及模块 1 的序列特异性识别;ZF8 作为模块 1 和 2 之间可变距离的间隔元件。此外,与模块 2-3 中心位置的不对称“A”碱基的接触对于具有对称核心序列但缺乏模块 1 的 CBS 的定向识别是必不可少的。此外,CTCF 可以容忍 CBS 序列中特定位置的碱基变化,从而允许 CTCF 在全基因组范围内结合到广泛的 CBS 上。总之,这些复杂的结构为 CTCF 与其同源结合位点的方向性、多样性、灵活性、动力学和保守性的分子机制提供了重要的见解。

相似文献

10
A genome-wide map of CTCF multivalency redefines the CTCF code.全基因组图谱解析 CTCF 多价态,重新定义 CTCF 密码。
Cell Rep. 2013 May 30;3(5):1678-1689. doi: 10.1016/j.celrep.2013.04.024. Epub 2013 May 23.

引用本文的文献

3
A haplotype-resolved view of human gene regulation.人类基因调控的单倍型解析视图。
bioRxiv. 2025 Jun 2:2024.06.14.599122. doi: 10.1101/2024.06.14.599122.

本文引用的文献

9
Chromatin Domains: The Unit of Chromosome Organization.染色质结构域:染色体组织的单位
Mol Cell. 2016 Jun 2;62(5):668-80. doi: 10.1016/j.molcel.2016.05.018.
10
CRISPR Double Cutting through the Labyrinthine Architecture of 3D Genomes.CRISPR 双切割三维基因组的错综复杂结构。
J Genet Genomics. 2016 May 20;43(5):273-88. doi: 10.1016/j.jgg.2016.03.006. Epub 2016 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验