Coßmann Jonas, Kos Pavel I, Varamogianni-Mamatsi Vassiliki, Assenheimer Devin S, Bischof Tobias A, Kuhn Timo, Vomhof Thomas, Papantonis Argyris, Giorgetti Luca, Gebhardt J Christof M
Institute of Biophysics, Ulm University, Ulm, Germany.
Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany.
Nat Commun. 2025 Feb 21;16(1):1833. doi: 10.1038/s41467-025-56889-5.
The three-dimensional folding of chromosomes is essential for nuclear functions such as DNA replication and gene regulation. The emergence of chromatin architecture is thus an important process during embryogenesis. To shed light on the molecular and kinetic underpinnings of chromatin architecture formation, we characterized biophysical properties of cohesin and CTCF binding to chromatin and their changes upon cofactor depletion using single-molecule imaging in live developing zebrafish embryos. We found that chromatin-bound fractions of both cohesin and CTCF increased significantly between the 1000-cell and shield stages, which we could explain through changes in both their association and dissociation rates. Moreover, increasing binding of cohesin restricted chromatin motion, potentially via loop extrusion, and showed distinct stage-dependent nuclear distribution. Polymer simulations with experimentally derived parameters recapitulated the experimentally observed gradual emergence of chromatin architecture. Our findings reveal molecular kinetics underlying chromatin architecture formation during zebrafish embryogenesis.
染色体的三维折叠对于诸如DNA复制和基因调控等核功能至关重要。因此,染色质结构的出现是胚胎发生过程中的一个重要过程。为了阐明染色质结构形成的分子和动力学基础,我们利用活的发育中的斑马鱼胚胎中的单分子成像技术,对黏连蛋白和CTCF与染色质结合的生物物理特性及其在辅助因子耗竭时的变化进行了表征。我们发现,在1000细胞期和盾板期之间,黏连蛋白和CTCF与染色质结合的比例均显著增加,我们可以通过它们结合和解离速率的变化来解释这一现象。此外,黏连蛋白结合的增加可能通过环挤压限制了染色质运动,并呈现出明显的阶段依赖性核分布。用实验得出的参数进行的聚合物模拟重现了实验观察到的染色质结构的逐渐出现。我们的研究结果揭示了斑马鱼胚胎发生过程中染色质结构形成的分子动力学。