Présent Romain M, Rotureau Elise, Billard Patrick, Pagnout Christophe, Sohm Bénédicte, Flayac Justine, Gley Renaud, Pinheiro José P, Duval Jérôme F L
CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, Vandoeuvre-lès-Nancy F54501, France.
Phys Chem Chem Phys. 2017 Nov 8;19(43):29114-29124. doi: 10.1039/c7cp05456d.
Genetically engineered microorganisms are alternatives to physicochemical methods for remediation of metal-contaminated aquifers due to their remarkable bioaccumulation capacities. The design of such biosystems would benefit from the elaboration of a sound quantitative connection between performance in terms of metal removal from aqueous solution and dynamics of the multiscale processes leading to metal biouptake. In this work, this elaboration is reported for Escherichia coli cells modified to overexpress intracellular metallothionein (MTc), a strong proteinaceous metal chelator. Depletion kinetics of Cd(ii) from bulk solution following biouptake and intracellular accumulation is addressed as a function of cell volume fraction using electroanalytical probes and ligand exchange-based analyses. It is shown that metal biouptake in the absence and presence of MTc is successfully interpreted on the basis of a formalism recently developed for metal partitioning dynamics at biointerfaces with integration of intracellular metal speciation. The analysis demonstrates how fast sequestration of metals by intracellular MTc bypasses metal excretion (efflux) and enhances the rate of metal depletion to an extent such that complete removal is achieved at sufficiently large cell volume fractions. The magnitude of the stability constant of nanoparticulate metal-MTc complexes, as derived from refined analysis of macroscopic bulk metal depletion data, is further confirmed by independent electrochemical measurement of metal binding by purified MTc extracts.
由于其卓越的生物累积能力,基因工程微生物是修复金属污染含水层的物理化学方法的替代方案。此类生物系统的设计将受益于建立从水溶液中去除金属的性能与导致金属生物摄取的多尺度过程动力学之间合理的定量联系。在这项工作中,报告了对经修饰以过表达细胞内金属硫蛋白(MTc,一种强大的蛋白质类金属螯合剂)的大肠杆菌细胞的上述阐述。使用电分析探针和基于配体交换的分析方法,研究了生物摄取和细胞内积累后,Cd(ii)从本体溶液中的消耗动力学与细胞体积分数的关系。结果表明,基于最近为生物界面处金属分配动力学开发的形式主义,并结合细胞内金属形态分析,成功解释了在有无MTc情况下的金属生物摄取过程。分析表明,细胞内MTc对金属的快速螯合如何绕过金属排泄(外流),并在一定程度上提高金属消耗速率,从而在足够大的细胞体积分数下实现完全去除。通过对宏观本体金属消耗数据的精细分析得出的纳米颗粒金属-MTc络合物稳定常数的大小,通过对纯化的MTc提取物进行金属结合的独立电化学测量得到了进一步证实。