Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
Nanoscale. 2017 Nov 9;9(43):16968-16980. doi: 10.1039/c7nr05451c.
Nanoshells, classically comprising gold as the metallic component and silica as the dielectric material, are important for fundamental studies in nanoplasmonics. They also empower a myriad of applications, including sensing, energy harvesting, and cancer therapy. Yet, laborious preparation precludes the development of next-generation nanoshells with structural complexity, compositional diversity, and tailorable plasmonic behaviors. This work presents an efficient approach to the bottom-up assembly of concentric nanoshells. By employing polydopamine as the dielectric material and exploiting its intrinsic adhesiveness and pH-tunable surface charge, the growth of each shell only takes 3-4 hours at room temperature. A series of polydopamine-based concentric nanoshells with programmable nanogap thickness, elemental composition (gold and silver), and geometrical configuration (number of layers) is prepared, followed by extensive structural characterization. Four of the silver-containing nanostructures are newly reported. Systematic investigations into the plasmonic properties of concentric nanoshells as a function of their structural parameters further reveal multiple Fano resonances and local-field "hot spots", infrequently reported plasmonic features for individual nanostructures fabricated using bottom-up wet chemistry. These results establish materials design rules for engineering complex plasmon-based systems originating from the integration of multiple plasmonic elements into defined locations within a compact nanostructure.
纳米壳通常由金作为金属成分和二氧化硅作为介电材料组成,对于纳米等离子体学的基础研究很重要。它们还赋予了无数的应用,包括传感、能量收集和癌症治疗。然而,繁琐的制备过程阻碍了具有结构复杂性、组成多样性和可调节等离子体行为的下一代纳米壳的发展。本工作提出了一种从下至上组装同心纳米壳的有效方法。通过使用聚多巴胺作为介电材料,并利用其内在的粘附性和 pH 可调的表面电荷,每个壳只需在室温下生长 3-4 小时。一系列基于聚多巴胺的同心纳米壳具有可编程的纳米间隙厚度、元素组成(金和银)和几何构型(层数),并进行了广泛的结构表征。其中四个含银的纳米结构是新报道的。系统研究同心纳米壳的等离子体特性作为其结构参数的函数,进一步揭示了多个 Fano 共振和局部场“热点”,这是使用自下而上的湿化学方法制备的单个纳米结构很少报道的等离子体特征。这些结果为通过将多个等离子体元件集成到紧凑纳米结构中的定义位置来设计复杂的基于等离子体的系统提供了材料设计规则。