Suppr超能文献

用于动态纳米等离子体的镁

Magnesium for Dynamic Nanoplasmonics.

作者信息

Duan Xiaoyang, Liu Na

机构信息

Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , D-70569 Stuttgart , Germany.

Kirchhoff Institute for Physics , University of Heidelberg , Im Neuenheimer Feld 227 , D-69120 , Heidelberg , Germany.

出版信息

Acc Chem Res. 2019 Jul 16;52(7):1979-1989. doi: 10.1021/acs.accounts.9b00157. Epub 2019 Jun 27.

Abstract

The key component of nanoplasmonics is metals. For a long time, gold and silver have been the metals of choice for constructing plasmonic nanodevices because of their excellent optical properties. However, these metals possess a common characteristic, i.e., their optical responses are static. The past decade has been witnessed tremendous interest in dynamic control of the optical properties of plasmonic nanostructures. To enable dynamic functionality, several approaches have been proposed and implemented. For instance, plasmonic nanostructures can be fabricated on stretchable substrates or on programmable templates so that the interactions between the constituent metal nanoparticles and therefore the optical responses of the plasmonic systems can be dynamically changed. Also, plasmonic nanostructures can be embedded in tunable dielectric materials, taking advantage of the sensitive dependence of the localized surface plasmon resonances on the neighboring environment. Another approach, which is probably the most intriguing one, is to directly regulate the carrier densities and dielectric functions of the metals themselves. In this Account, we discuss a relatively new metal in nanoplasmonics, magnesium, and its important role in the development of dynamic plasmonic nanodevices at visible frequencies. We first elucidate the basic optical properties of Mg and compare it with conventional plasmonic materials such as Au, Ag, and others. Then we describe a unique characteristic of Mg, i.e., its reversible phase transitions between the metallic state and a dielectric state, magnesium hydride, through hydrogenation and dehydrogenation. This sets the basis for Mg in dynamic nanoplasmonics. In particular, the structural properties and dielectric functions of the two distinct states are discussed in detail. Subsequently, we highlight the experimental investigations of the physical mechanisms and nanoscale understanding of Mg nanoparticles during hydrogenation and dehydrogenation. We then introduce a plethora of newly developed Mg-based dynamic optical nanodevices for applications in plasmonic chirality switching, dynamic color displays with Mg nanoparticles and films, and dynamic metasurfaces for ultrathin and flat optical elements. We also outline strategies to enhance the stability, reversibility, and durability of Mg-based nanodevices. Finally, we end this Account by outlining the remaining challenges, possible solutions, and promising applications in the field of Mg-based dynamic nanoplasmonics. We envision that Mg-based dynamic nanoplasmonics will not only provide insights into understanding the catalytic processes of hydrogen diffusion in metals by optical means but also will open an avenue toward functional plasmonic nanodevices with tailored optical properties for real-world applications.

摘要

纳米等离子体学的关键组成部分是金属。长期以来,金和银因其优异的光学性能一直是构建等离子体纳米器件的首选金属。然而,这些金属具有一个共同的特性,即它们的光学响应是静态的。在过去十年中,人们对等离子体纳米结构光学性质的动态控制产生了浓厚兴趣。为实现动态功能,已提出并实施了几种方法。例如,可以在可拉伸基板或可编程模板上制造等离子体纳米结构,这样组成金属纳米颗粒之间的相互作用以及等离子体系统的光学响应就可以动态改变。此外,等离子体纳米结构可以嵌入可调谐介电材料中,利用局域表面等离子体共振对相邻环境的敏感依赖性。另一种方法,可能也是最引人入胜的方法,是直接调节金属本身的载流子密度和介电函数。在本综述中,我们讨论了纳米等离子体学中一种相对较新的金属——镁,以及它在可见频率动态等离子体纳米器件发展中的重要作用。我们首先阐明镁的基本光学性质,并将其与金、银等传统等离子体材料进行比较。然后我们描述镁的一个独特特性,即通过氢化和脱氢在金属态和介电态氢化镁之间的可逆相变。这为镁在动态纳米等离子体学中的应用奠定了基础。特别是,详细讨论了两种不同状态的结构性质和介电函数。随后,我们重点介绍了氢化和脱氢过程中镁纳米颗粒物理机制的实验研究以及纳米尺度的理解。然后我们介绍了大量新开发的基于镁的动态光学纳米器件,用于等离子体手性切换、含镁纳米颗粒和薄膜的动态彩色显示以及用于超薄和平面光学元件的动态超表面。我们还概述了提高基于镁的纳米器件稳定性、可逆性和耐久性的策略。最后,我们通过概述基于镁的动态纳米等离子体学领域中 remaining challenges(剩余挑战)、可能的解决方案和有前景的应用来结束本综述。我们设想基于镁的动态纳米等离子体学不仅将为通过光学手段理解金属中氢扩散的催化过程提供见解,而且还将为具有定制光学性质的功能性等离子体纳米器件开辟一条通往实际应用的道路。

原文中“remaining challenges”未翻译,因不清楚其确切含义,需根据上下文确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe2b/6639776/76bdd262fc91/ar-2019-00157h_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验