Suppr超能文献

用于学习高维自由能面的随机神经网络方法。

Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces.

作者信息

Schneider Elia, Dai Luke, Topper Robert Q, Drechsel-Grau Christof, Tuckerman Mark E

机构信息

Department of Chemistry, New York University, New York, New York 10003, USA.

Department of Chemistry, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, New York 10003, USA.

出版信息

Phys Rev Lett. 2017 Oct 13;119(15):150601. doi: 10.1103/PhysRevLett.119.150601. Epub 2017 Oct 11.

Abstract

The generation of free energy landscapes corresponding to conformational equilibria in complex molecular systems remains a significant computational challenge. Adding to this challenge is the need to represent, store, and manipulate the often high-dimensional surfaces that result from rare-event sampling approaches employed to compute them. In this Letter, we propose the use of artificial neural networks as a solution to these issues. Using specific examples, we discuss network training using enhanced-sampling methods and the use of the networks in the calculation of ensemble averages.

摘要

在复杂分子系统中,生成与构象平衡相对应的自由能景观仍然是一项重大的计算挑战。更具挑战性的是,需要表示、存储和处理通过用于计算它们的罕见事件采样方法所产生的通常高维的表面。在本信函中,我们提出使用人工神经网络来解决这些问题。通过具体示例,我们讨论了使用增强采样方法进行网络训练以及网络在系综平均值计算中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验