Nateghi Vahid, Nüske Feliks
Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany.
J Chem Theory Comput. 2025 Aug 12;21(15):7236-7248. doi: 10.1021/acs.jctc.5c00479. Epub 2025 Jul 18.
In this paper, we show how kernel-based models for the Koopman generator─the gEDMD method─can be used to identify coarse-grained dynamics on reduced variables, which retain the slowest transition time scales of the original dynamics. The centerpiece of this study is a learning method to identify an effective diffusion in coarse-grained space, which is similar in spirit to the force matching method. By leveraging the gEDMD model for the Koopman generator, the kinetic accuracy of the CG model can be evaluated. By combining this method with a suitable learning method for the effective free energy, such as force matching, a complete model for the effective dynamics can be inferred. Using a two-dimensional model system and molecular dynamics simulation data of alanine dipeptide and the Chignolin mini-protein, we demonstrate that the proposed method successfully and robustly recovers the essential kinetic and also thermodynamic properties of the full model. The parameters of the method can be determined using standard model validation techniques.
在本文中,我们展示了如何将基于核的库普曼生成器模型——广义动态模态分解(gEDMD)方法——用于识别降维变量上的粗粒化动力学,这些变量保留了原始动力学中最慢的过渡时间尺度。本研究的核心是一种学习方法,用于识别粗粒化空间中的有效扩散,其在本质上与力匹配方法类似。通过利用库普曼生成器的gEDMD模型,可以评估粗粒化模型的动力学精度。通过将该方法与适用于有效自由能的学习方法(如力匹配)相结合,可以推断出有效动力学的完整模型。使用二维模型系统以及丙氨酸二肽和奇诺林小蛋白的分子动力学模拟数据,我们证明了所提出的方法成功且稳健地恢复了完整模型的基本动力学和热力学性质。该方法的参数可以使用标准模型验证技术来确定。