Suppr超能文献

序列依赖的核小体滑动的计算证据。

In silico evidence for sequence-dependent nucleosome sliding.

机构信息

Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637.

Laboratory for Molecular and Computational Genomics, Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9197-E9205. doi: 10.1073/pnas.1705685114. Epub 2017 Oct 18.

Abstract

Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nucleosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nucleosome repositioning. The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.

摘要

核小体是染色质的基本结构单位,为细胞过程的调控提供了重要机制。基因组中核小体的位置不是随机的,而是依赖于基础 DNA 序列和核内其他蛋白质的动态作用。这些过程是细胞功能的核心,而 DNA 序列和核小体动力学之间相互作用的分子细节还知之甚少。在这项工作中,我们通过依赖分子模型详细研究了这种相互作用,该模型允许对潜在的自由能表面和核小体重定位的相应动力学进行全面描述。核小体重定位的机制与 DNA 序列强烈相关,并直接与给定 DNA 序列与组蛋白核心的结合能有关。还表明,染色质重塑剂可以通过施加扭矩来克服 DNA 序列偏好,然后鉴定组蛋白 H4 尾巴是一个关键组件,通过它,DNA 序列、组蛋白修饰和染色质重塑剂实际上可以被耦合。

相似文献

1
In silico evidence for sequence-dependent nucleosome sliding.序列依赖的核小体滑动的计算证据。
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9197-E9205. doi: 10.1073/pnas.1705685114. Epub 2017 Oct 18.
3
Structural Basis of Nucleosome Recognition and Modulation.核小体识别与调控的结构基础。
Bioessays. 2020 Sep;42(9):e1900234. doi: 10.1002/bies.201900234. Epub 2020 Jun 22.
7
DNA damage may drive nucleosomal reorganization to facilitate damage detection.DNA损伤可能会驱动核小体重组以促进损伤检测。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032708. doi: 10.1103/PhysRevE.89.032708. Epub 2014 Mar 14.

引用本文的文献

4
A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin.相分离染色质的结构与动力学的分子视角
J Phys Chem B. 2024 Oct 31;128(43):10593-10603. doi: 10.1021/acs.jpcb.4c04420. Epub 2024 Oct 16.
7
Sequence Dependence in Nucleosome Dynamics.核小体动力学中的序列依赖性。
J Phys Chem B. 2024 Apr 4;128(13):3090-3101. doi: 10.1021/acs.jpcb.3c07363. Epub 2024 Mar 26.

本文引用的文献

1
Tension-Dependent Free Energies of Nucleosome Unwrapping.核小体解旋的张力依赖性自由能
ACS Cent Sci. 2016 Sep 28;2(9):660-666. doi: 10.1021/acscentsci.6b00201. Epub 2016 Aug 23.
3
Nucleosome dynamics: Sequence matters.核小体动力学:序列很重要。
Adv Colloid Interface Sci. 2016 Jun;232:101-113. doi: 10.1016/j.cis.2016.01.007. Epub 2016 Feb 4.
4
Coarse-Grained Ions for Nucleic Acid Modeling.用于核酸建模的粗粒度离子
J Chem Theory Comput. 2015 Nov 10;11(11):5436-46. doi: 10.1021/acs.jctc.5b00341. Epub 2015 Oct 27.
5
Coarse-grained modeling of DNA curvature.DNA弯曲的粗粒度建模。
J Chem Phys. 2014 Oct 28;141(16):165103. doi: 10.1063/1.4897649.
6
DNA shape dominates sequence affinity in nucleosome formation.DNA形状在核小体形成中主导序列亲和力。
Phys Rev Lett. 2014 Oct 17;113(16):168101. doi: 10.1103/PhysRevLett.113.168101. Epub 2014 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验