Suppr超能文献

单链DNA介导的蛋白质相分离中液滴微观结构的融合动力学与尺寸依赖性

Fusion Dynamics and Size-Dependence of Droplet Microstructure in ssDNA-Mediated Protein Phase Separation.

作者信息

Bian Yunqiang, Lv Fangyi, Pan Hai, Ren Weitong, Zhang Weiwei, Wang Yanwei, Cao Yi, Li Wenfei, Wang Wei

机构信息

Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China.

Department of Physics, Wenzhou University, Wenzhou 325035, China.

出版信息

JACS Au. 2024 Sep 4;4(9):3690-3704. doi: 10.1021/jacsau.4c00690. eCollection 2024 Sep 23.

Abstract

Biomolecular condensation involving proteins and nucleic acids has been recognized to play crucial roles in genome organization and transcriptional regulation. However, the biophysical mechanisms underlying the droplet fusion dynamics and microstructure evolution during the early stage of liquid-liquid phase separation (LLPS) remain elusive. In this work, we study the phase separation of linker histone H1, which is among the most abundant chromatin proteins, in the presence of single-stranded DNA (ssDNA) capable of forming a G-quadruplex by using molecular simulations and experimental characterization. We found that droplet fusion is a rather stochastic and kinetically controlled process. Productive fusion events are triggered by the formation of ssDNA-mediated electrostatic bridges within the droplet contacting zone. The droplet microstructure is size-dependent and evolves driven by maximizing the number of electrostatic contacts. We also showed that the folding of ssDNA to the G-quadruplex promotes LLPS by increasing the multivalency and strength of protein-DNA interactions. These findings provide deep mechanistic insights into the growth dynamics of biomolecular droplets and highlight the key role of kinetic control during the early stage of ssDNA-protein condensation.

摘要

涉及蛋白质和核酸的生物分子凝聚已被认为在基因组组织和转录调控中起着关键作用。然而,液-液相分离(LLPS)早期液滴融合动力学和微观结构演变背后的生物物理机制仍然难以捉摸。在这项工作中,我们通过分子模拟和实验表征,研究了最丰富的染色质蛋白之一连接组蛋白H1在能够形成G-四链体的单链DNA(ssDNA)存在下的相分离。我们发现液滴融合是一个相当随机且受动力学控制的过程。有效的融合事件由液滴接触区内ssDNA介导的静电桥的形成触发。液滴微观结构取决于尺寸,并在最大化静电接触数量的驱动下演变。我们还表明,ssDNA折叠成G-四链体通过增加蛋白质-DNA相互作用的多价性和强度来促进LLPS。这些发现为生物分子液滴的生长动力学提供了深入的机制见解,并突出了ssDNA-蛋白质凝聚早期动力学控制的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d818/11423313/b99ec38283b6/au4c00690_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验