Suppr超能文献

形状变化弹性双层的生长模式。

Growth patterns for shape-shifting elastic bilayers.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11597-11602. doi: 10.1073/pnas.1709025114. Epub 2017 Oct 16.

Abstract

Inspired by the differential-growth-driven morphogenesis of leaves, flowers, and other tissues, there is increasing interest in artificial analogs of these shape-shifting thin sheets made of active materials that respond to environmental stimuli such as heat, light, and humidity. But how can we determine the growth patterns to achieve a given shape from another shape? We solve this geometric inverse problem of determining the growth factors and directions (the metric tensors) for a given isotropic elastic bilayer to grow into a target shape by posing and solving an elastic energy minimization problem. A mathematical equivalence between bilayers and curved monolayers simplifies the inverse problem considerably by providing algebraic expressions for the growth metric tensors in terms of those of the final shape. This approach also allows us to prove that we can grow any target surface from any reference surface using orthotropically growing bilayers. We demonstrate this by numerically simulating the growth of a flat sheet into a face, a cylindrical sheet into a flower, and a flat sheet into a complex canyon-like structure.

摘要

受叶子、花朵和其他组织的差异生长驱动形态发生的启发,人们对由对热、光、湿度等环境刺激做出响应的活性材料制成的这些可变形薄片的人工模拟越来越感兴趣。但是,我们如何确定生长模式,以从另一种形状获得给定的形状呢?我们通过提出并解决弹性能量最小化问题来解决确定各向同性弹性双层以生长成目标形状的生长因子和方向(度量张量)的这个几何反问题。通过提供关于最终形状的生长度量张量的代数表达式,双层和弯曲单层之间的数学等价性大大简化了反问题。这种方法还使我们能够证明,我们可以使用各向异性生长的双层从任何参考表面生长任何目标表面。我们通过数值模拟将平面片生长成一个面、圆柱片生长成一朵花以及将平面片生长成复杂的峡谷状结构来证明这一点。

相似文献

1
Growth patterns for shape-shifting elastic bilayers.形状变化弹性双层的生长模式。
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11597-11602. doi: 10.1073/pnas.1709025114. Epub 2017 Oct 16.
2
Shape-shifting structured lattices via multimaterial 4D printing.通过多材料 4D 打印实现形态变化的结构化晶格。
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20856-20862. doi: 10.1073/pnas.1908806116. Epub 2019 Oct 2.
3
The shape of a long leaf.长叶的形状。
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22049-54. doi: 10.1073/pnas.0911954106. Epub 2009 Dec 4.
4
Models for elastic shells with incompatible strains.具有不相容应变的弹性壳模型。
Proc Math Phys Eng Sci. 2014 May 8;470(2165):20130604. doi: 10.1098/rspa.2013.0604.
5
Morphogenesis of growing soft tissues.生长中软组织的形态发生
Phys Rev Lett. 2008 Aug 8;101(6):068101. doi: 10.1103/PhysRevLett.101.068101. Epub 2008 Aug 5.
6
Mechanics of biomimetic 4D printed structures.仿生 4D 打印结构的力学。
Soft Matter. 2018 Nov 7;14(43):8771-8779. doi: 10.1039/c8sm00990b.
7
On the growth and form of the gut.肠道的生长和形态。
Nature. 2011 Aug 3;476(7358):57-62. doi: 10.1038/nature10277.
9
Biomimetic 4D printing.仿生 4D 打印。
Nat Mater. 2016 Apr;15(4):413-8. doi: 10.1038/nmat4544. Epub 2016 Jan 25.
10
Curvature elasticity of mixed amphiphilic bilayers.混合两亲性双层膜的曲率弹性
J Chem Phys. 2004 Jun 15;120(23):11267-84. doi: 10.1063/1.1739215.

引用本文的文献

1
Active twisting for adaptive droplet collection.用于自适应液滴收集的主动扭转
Nat Comput Sci. 2025 Apr;5(4):313-321. doi: 10.1038/s43588-025-00786-w. Epub 2025 Apr 21.
2
Geometric modeling of knitted fabrics.针织物的几何建模。
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2416536122. doi: 10.1073/pnas.2416536122. Epub 2025 Feb 11.
7
Curvature-driven instabilities in thin active shells.薄活性壳中的曲率驱动不稳定性。
R Soc Open Sci. 2022 Oct 12;9(10):220487. doi: 10.1098/rsos.220487. eCollection 2022 Oct.
8
Controlling the shape and topology of two-component colloidal membranes.控制双组分胶体膜的形状和拓扑结构。
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2204453119. doi: 10.1073/pnas.2204453119. Epub 2022 Aug 1.

本文引用的文献

2
Geometry and mechanics of thin growing bilayers.薄生长双层膜的几何结构与力学特性
Soft Matter. 2016 May 11;12(19):4435-42. doi: 10.1039/c6sm00246c.
3
Biomimetic 4D printing.仿生 4D 打印。
Nat Mater. 2016 Apr;15(4):413-8. doi: 10.1038/nmat4544. Epub 2016 Jan 25.
4
Geometry of thin nematic elastomer sheets.薄向列型弹性体薄片的几何结构。
Phys Rev Lett. 2014 Dec 19;113(25):257801. doi: 10.1103/PhysRevLett.113.257801. Epub 2014 Dec 17.
6
Geometry and mechanics in the opening of chiral seed pods.手性豆荚开启过程中的几何与力学
Science. 2011 Sep 23;333(6050):1726-30. doi: 10.1126/science.1203874.
8
Growth, geometry, and mechanics of a blooming lily.百合花盛开过程中的生长、几何形状和力学特性。
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5516-21. doi: 10.1073/pnas.1007808108. Epub 2011 Mar 21.
9
Genetic control of organ shape and tissue polarity.器官形态和组织极性的遗传控制。
PLoS Biol. 2010 Nov 9;8(11):e1000537. doi: 10.1371/journal.pbio.1000537.
10
The shape of a long leaf.长叶的形状。
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22049-54. doi: 10.1073/pnas.0911954106. Epub 2009 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验