Qin Nan, Shen Chenyang, Tsai Min-Yu, Pinto Marco, Tian Zhen, Dedes Georgios, Pompos Arnold, Jiang Steve B, Parodi Katia, Jia Xun
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
Int J Radiat Oncol Biol Phys. 2018 Jan 1;100(1):235-243. doi: 10.1016/j.ijrobp.2017.09.002. Epub 2017 Sep 12.
One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC.
The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases.
Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation.
We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame.
碳离子治疗的主要优势之一是在布拉格峰区域具有更高的生物学效应。对于调强碳离子治疗(IMCT),由于蒙特卡罗(MC)方法在物理过程建模和生物效应估计方面的准确性,使用该方法计算每个笔形束斑的特性以进行治疗计划是很理想的。我们之前开发了goCMC,这是一种面向图形处理单元(GPU)的碳离子治疗MC引擎。本研究的目的是使用goCMC构建一个生物治疗计划优化系统。
实施修复-错配-固定模型来计算每个光斑的线性二次模型参数的空间分布。开发了一个治疗计划优化模块,以最小化规定生物效应与实际生物效应之间的差异。我们使用基于梯度的算法来解决优化问题。该系统以客户端-服务器架构嵌入Varian Eclipse治疗计划系统中,以实现用户友好的计划环境。我们用一维均匀水模体案例和3个三维患者案例对该系统进行了测试。
我们的系统生成的治疗计划具有覆盖目标区域并保护关键结构的生物扩展布拉格峰。使用4块英伟达GTX 1080 GPU,对于前列腺病例(8282个光斑),包括光斑模拟、优化和最终剂量计算在内的总计算时间为0.6小时,胰腺病例(3795个光斑)为0.2小时,脑病例(6724个光斑)为0.3小时。计算时间主要由MC光斑模拟主导。
我们为IMCT构建了一个生物治疗计划优化系统,该系统使用快速MC引擎goCMC进行模拟。据我们所知,这是首次在临床可行的时间范围内实现基于全MC的IMCT逆向计划。