Suppr超能文献

考虑一般配合力和特殊配合力的全基因组回归模型,无论性状结构如何,都能以相似的准确性预测油菜的杂种表现。

Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture.

作者信息

Werner Christian R, Qian Lunwen, Voss-Fels Kai P, Abbadi Amine, Leckband Gunhild, Frisch Matthias, Snowdon Rod J

机构信息

Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.

Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.

出版信息

Theor Appl Genet. 2018 Feb;131(2):299-317. doi: 10.1007/s00122-017-3002-5. Epub 2017 Oct 28.

Abstract

Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.

摘要

利用甘蓝型油菜60K基因分型芯片进行基因组预测在油菜杂交种中是有效的。预测准确性更多地取决于性状复杂性而非预测模型。在油菜育种计划中,亲本组合的性能预测至关重要。由于杂种优势现象,本身的表现并非F1杂交种性能的可靠指标,选择合适的亲本需要在广泛的田间试验中测试大量杂交组合。然而,一般来说,潜在杂交种的数量大大超过了育种能力和预算。基因组选择(GS)的整合可以大幅增加可评估的潜在组合数量。GS模型可用于仅根据未测试个体的基因型谱预测其性能,使用先前在训练群体中预测的标记效应。这允许对有前景的基因型进行预选,从而更有效地分配资源。在本研究中,我们评估了Illumina甘蓝型油菜60K SNP芯片用于基因组预测的有效性,并比较了基于同方差岭回归最佳线性无偏预测(BLUP)的三种替代方法和三种分别考虑一般配合力(GCA)和特殊配合力(SCA)的贝叶斯预测模型。在一个商业育种计划中,通过220个父本双单倍体系与5个雄性不育测验系之间的不平衡杂交产生了总共448个杂交种。对七个农艺性状的预测能力进行了评估。我们证明,甘蓝型油菜60K基因分型芯片是实施油菜杂交种性能基因组预测的一个合适且非常有价值的平台。此外,我们首次深入探讨了已建立的统计模型在预测具有不同多基因控制模式的重要农艺性状方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验