Suppr超能文献

基于多组学的油菜杂交性能预测

Multi-omics-based prediction of hybrid performance in canola.

作者信息

Knoch Dominic, Werner Christian R, Meyer Rhonda C, Riewe David, Abbadi Amine, Lücke Sophie, Snowdon Rod J, Altmann Thomas

机构信息

Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, OT Gatersleben, Germany.

The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.

出版信息

Theor Appl Genet. 2021 Apr;134(4):1147-1165. doi: 10.1007/s00122-020-03759-x. Epub 2021 Feb 1.

Abstract

Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.

摘要

用转录组数据补充或替代遗传标记,并使用基于高斯核的再生核希尔伯特空间回归,可提高油菜复杂农艺性状的杂种预测准确性。在植物育种中,由于杂种优势,即后代与其自交亲本相比具有更优的表现,杂种变得尤为重要。由于培育新的顶级杂种需要耗费大量人力和成本的育种计划,包括测试大量的实验杂种,因此杂种性能的预测对植物育种者来说至关重要。在本研究中,我们测试了在春型油菜(甘蓝型油菜)中单独或组合使用不同组学特征的杂种预测模型的有效性。为此,在欧洲各地的商业田间试验中,对950个F杂种群体进行了种子产量和其他六个与农艺相关性状的评估。这些杂种的一个子集还在气候控制的温室中进行了早期生物量生产的评估。对于477个亲本油菜品系中的每一个,测定了13201个单核苷酸多态性(SNP)、154种初级代谢产物和19479个转录本,并将其用作预测变量。SNP标记和转录本都使用(基因组)最佳线性无偏预测模型(gBLUP)有效地预测杂种性能。与使用纯遗传标记的模型相比,纳入转录组数据的模型在七个农艺性状中的五个性状上预测准确性显著更高,这表明转录本携带了基因组数据之外的重要信息。值得注意的是,基于高斯核的再生核希尔伯特空间回归在七个农艺性状中的六个性状上显著超过了gBLUP模型的预测能力,证明了其在未来油菜育种计划中实施的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aea/7973648/1e8fcfc37836/122_2020_3759_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验