Suppr超能文献

基因组预测能够为在非重复试验中评估的大麦品系的基因型值提供精确估计。

Genomic Prediction Can Provide Precise Estimates of the Genotypic Value of Barley Lines Evaluated in Unreplicated Trials.

作者信息

Terraillon Jérôme, Frisch Matthias, Falke K Christin, Jaiser Heidi, Spiller Monika, Cselényi László, Krumnacker Kerstin, Boxberger Susanna, Habekuß Antje, Kopahnke Doris, Serfling Albrecht, Ordon Frank, Zenke-Philippi Carola

机构信息

Institute of Agronomy and Plant Breeding II, Justus Liebig University, Gießen, Germany.

Saatzucht Josef Breun GmbH & Co. KG, Herzogenaurach, Germany.

出版信息

Front Plant Sci. 2022 Apr 22;13:735256. doi: 10.3389/fpls.2022.735256. eCollection 2022.

Abstract

Genomic prediction has been established in breeding programs to predict the genotypic values of selection candidates without phenotypic data. First results in wheat showed that genomic predictions can also prove useful to select among material for which phenotypic data are available. In such a scenario, the selection candidates are evaluated with low intensity in the field. Genome-wide effects are estimated from the field data and are then used to predict the genotypic values of the selection candidates. The objectives of our simulation study were to investigate the correlations () between genomic predictions and genotypic values and to compare these with the correlations () between phenotypic values and genotypic values . We used data from a yield trial of 250 barley lines to estimate variance components and genome-wide effects. These parameters were used as basis for simulations. The simulations included multiple crossing schemes, population sizes, and varying sizes of the components of the masking variance. The genotypic values of the selection candidates were obtained by genetic simulations, the phenotypic values by simulating evaluation in the field, and the genomic predictions by RR-BLUP effect estimation from the phenotypic values. The correlations () were greater than the correlations () for all investigated scenarios. We conclude that using genomic predictions for selection among candidates tested with low intensity in the field can proof useful for increasing the efficiency of barley breeding programs.

摘要

基因组预测已在育种计划中确立,用于在没有表型数据的情况下预测选择候选者的基因型值。小麦的初步结果表明,基因组预测对于在已有表型数据的材料中进行选择也可能是有用的。在这种情况下,选择候选者在田间以低强度进行评估。从田间数据估计全基因组效应,然后用于预测选择候选者的基因型值。我们模拟研究的目的是调查基因组预测()与基因型值()之间的相关性,并将其与表型值()和基因型值()之间的相关性进行比较。我们使用了250个大麦品系产量试验的数据来估计方差成分和全基因组效应。这些参数被用作模拟的基础。模拟包括多种杂交方案、群体大小以及掩盖方差各成分的不同大小。选择候选者的基因型值()通过遗传模拟获得,表型值()通过模拟田间评估获得,基因组预测()通过从表型值进行RR - BLUP效应估计获得。在所有研究的场景中,相关性()大于相关性()。我们得出结论,在田间以低强度测试的候选者中使用基因组预测进行选择,对于提高大麦育种计划的效率可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b6a/9072862/d5bf74777dcf/fpls-13-735256-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验