Suppr超能文献

在Cellprofiler中使用机器学习进行高通量成像实验的质量控制

Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler.

作者信息

Bray Mark-Anthony, Carpenter Anne E

机构信息

Novartis Institutes for BioMedical Research, Cambridge, MA, USA.

Imaging Platform, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.

出版信息

Methods Mol Biol. 2018;1683:89-112. doi: 10.1007/978-1-4939-7357-6_7.

Abstract

Robust high-content screening of visual cellular phenotypes has been enabled by automated microscopy and quantitative image analysis. The identification and removal of common image-based aberrations is critical to the screening workflow. Out-of-focus images, debris, and auto-fluorescing samples can cause artifacts such as focus blur and image saturation, contaminating downstream analysis and impairing identification of subtle phenotypes. Here, we describe an automated quality control protocol implemented in validated open-source software, leveraging the suite of image-based measurements generated by CellProfiler and the machine-learning functionality of CellProfiler Analyst.

摘要

自动化显微镜和定量图像分析实现了对视觉细胞表型的强大高内涵筛选。识别和去除常见的基于图像的像差对于筛选工作流程至关重要。失焦图像、碎片和自发荧光样本会导致诸如焦点模糊和图像饱和等伪像,污染下游分析并妨碍对细微表型的识别。在这里,我们描述了一种在经过验证的开源软件中实施的自动化质量控制方案,利用CellProfiler生成的一系列基于图像的测量值以及CellProfiler Analyst的机器学习功能。

相似文献

1
Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler.
Methods Mol Biol. 2018;1683:89-112. doi: 10.1007/978-1-4939-7357-6_7.
3
An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
Methods. 2017 Jan 1;112:201-210. doi: 10.1016/j.ymeth.2016.08.018. Epub 2016 Sep 2.
4
A cell-level quality control workflow for high-throughput image analysis.
BMC Bioinformatics. 2020 Jul 2;21(1):280. doi: 10.1186/s12859-020-03603-5.
5
CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis.
Bioinformatics. 2021 Nov 5;37(21):3992-3994. doi: 10.1093/bioinformatics/btab634.
6
Workflow and metrics for image quality control in large-scale high-content screens.
J Biomol Screen. 2012 Feb;17(2):266-74. doi: 10.1177/1087057111420292. Epub 2011 Sep 28.
8
Quantifying co-cultured cell phenotypes in high-throughput using pixel-based classification.
Methods. 2016 Mar 1;96:6-11. doi: 10.1016/j.ymeth.2015.12.002. Epub 2015 Dec 11.
9
Comparison between two programs for image analysis, machine learning and subsequent classification.
Tissue Cell. 2019 Jun;58:12-16. doi: 10.1016/j.tice.2019.03.002. Epub 2019 Mar 27.
10
CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
BMC Bioinformatics. 2015 Nov 4;16:368. doi: 10.1186/s12859-015-0759-x.

引用本文的文献

1
Fluorescence lifetime sorting reveals tunable enzyme interactions within cytoplasmic condensates.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202311105. Epub 2024 Oct 14.
2
CLEMSite, a software for automated phenotypic screens using light microscopy and FIB-SEM.
J Cell Biol. 2023 Mar 6;222(3). doi: 10.1083/jcb.202209127. Epub 2022 Dec 23.
3
Quality assessment in light microscopy for routine use through simple tools and robust metrics.
J Cell Biol. 2022 Nov 7;221(11). doi: 10.1083/jcb.202107093. Epub 2022 Sep 29.
4
Next-Generation Pathology Using Multiplexed Immunohistochemistry: Mapping Tissue Architecture at Single-Cell Level.
Front Oncol. 2022 Jul 29;12:918900. doi: 10.3389/fonc.2022.918900. eCollection 2022.
5
Serine/Threonine Protein Phosphatase 2A Regulates the Transport of Axonal Mitochondria.
Front Cell Neurosci. 2022 Mar 18;16:852245. doi: 10.3389/fncel.2022.852245. eCollection 2022.
6
Data Integration Challenges for Machine Learning in Precision Medicine.
Front Med (Lausanne). 2022 Jan 25;8:784455. doi: 10.3389/fmed.2021.784455. eCollection 2021.
7
Systematic High-Content Screening of Fluorescently Tagged Yeast Double Mutant Strains.
Methods Mol Biol. 2021;2381:57-78. doi: 10.1007/978-1-0716-1740-3_3.
8
Marine dissolved organic matter: a vast and unexplored molecular space.
Appl Microbiol Biotechnol. 2021 Oct;105(19):7225-7239. doi: 10.1007/s00253-021-11489-3. Epub 2021 Sep 18.
9
High-Throughput Imaging of Arrays of Fluorescently Tagged Yeast Mutant Strains.
Methods Mol Biol. 2021;2304:221-242. doi: 10.1007/978-1-0716-1402-0_12.
10

本文引用的文献

1
Annotated high-throughput microscopy image sets for validation.
Nat Methods. 2012 Jun 28;9(7):637. doi: 10.1038/nmeth.2083.
2
PhenoRipper: software for rapidly profiling microscopy images.
Nat Methods. 2012 Jun 28;9(7):635-7. doi: 10.1038/nmeth.2097.
3
Workflow and metrics for image quality control in large-scale high-content screens.
J Biomol Screen. 2012 Feb;17(2):266-74. doi: 10.1177/1087057111420292. Epub 2011 Sep 28.
4
Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software.
Bioinformatics. 2011 Apr 15;27(8):1179-80. doi: 10.1093/bioinformatics/btr095. Epub 2011 Feb 23.
5
High-content phenotypic profiling of drug response signatures across distinct cancer cells.
Mol Cancer Ther. 2010 Jun;9(6):1913-26. doi: 10.1158/1535-7163.MCT-09-1148. Epub 2010 Jun 8.
6
Screening cellular feature measurements for image-based assay development.
J Biomol Screen. 2010 Aug;15(7):840-6. doi: 10.1177/1087057110370895. Epub 2010 Jun 1.
7
Automated microscopy for high-content RNAi screening.
J Cell Biol. 2010 Feb 22;188(4):453-61. doi: 10.1083/jcb.200910105.
8
High-content screening: a decade of evolution.
J Biomol Screen. 2010 Jan;15(1):1-9. doi: 10.1177/1087057109353790. Epub 2009 Dec 11.
9
Image analysis in high-content screening.
Comb Chem High Throughput Screen. 2009 Nov;12(9):899-907. doi: 10.2174/138620709789383213.
10
Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1826-31. doi: 10.1073/pnas.0808843106. Epub 2009 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验