Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA.
J Magn Reson Imaging. 2018 Jun;47(6):1542-1551. doi: 10.1002/jmri.25880. Epub 2017 Oct 30.
Extraction of liver parenchyma is an important step in the evaluation of R2*-based hepatic iron content (HIC). Traditionally, this is performed by radiologists via whole-liver contouring and T2*-thresholding to exclude hepatic vessels. However, the vessel exclusion process is iterative, time-consuming, and susceptible to interreviewer variability.
To implement and evaluate an automatic hepatic vessel exclusion and parenchyma extraction technique for accurate assessment of R2*-based HIC.
Retrospective analysis of clinical data.
Data from 511 MRI exams performed on 257 patients were analyzed.
FIELD STRENGTH/SEQUENCE: All patients were scanned on a 1.5T scanner using a multiecho gradient echo sequence for clinical monitoring of HIC.
An automated method based on a multiscale vessel enhancement filter was investigated for three input data types-contrast-optimized composite image, T2* map, and R2* map-to segment blood vessels and extract liver tissue for R2*-based HIC assessment. Segmentation and R2* results obtained using this automated technique were compared with those from a reference T2*-thresholding technique performed by a radiologist.
The Dice similarity coefficient was used to compare the segmentation results between the extracted parenchymas, and linear regression and Bland-Altman analyses were performed to compare the R2* results, obtained with the automated and reference techniques.
Mean liver R2* values estimated from all three filter-based methods showed excellent agreement with the reference method (slopes 1.04-1.05, R > 0.99, P < 0.001). Parenchyma areas extracted using the reference and automated methods had an average overlap area of 87-88%. The T2*-thresholding technique included small vessels and pixels at the vessel/tissue boundaries as parenchymal area, potentially causing a small bias (<5%) in R2* values compared to the automated method.
The excellent agreement between reference and automated hepatic vessel segmentation methods confirms the accuracy and robustness of the proposed method. This automated approach might improve the radiologist's workflow by reducing the interpretation time and operator dependence for assessing HIC, an important clinical parameter that guides iron overload management.
3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1542-1551.
提取肝脏实质是评估基于 R2的肝铁含量(HIC)的重要步骤。传统上,这是由放射科医生通过全肝轮廓勾画和 T2-阈值来排除肝血管完成的。然而,血管排除过程是迭代的,耗时的,并且容易受到复查者之间的差异的影响。
实现并评估一种自动肝血管排除和实质提取技术,用于准确评估基于 R2*的 HIC。
临床数据的回顾性分析。
对 257 名患者的 511 次 MRI 检查的数据进行了分析。
磁场强度/序列:所有患者均在 1.5T 扫描仪上使用多回波梯度回波序列进行扫描,用于 HIC 的临床监测。
研究了一种基于多尺度血管增强滤波器的自动方法,用于三种输入数据类型-对比优化的组合图像,T2图和 R2图-以分割血管并提取用于基于 R2的 HIC 评估的肝脏组织。使用此自动技术获得的分割和 R2结果与由放射科医生执行的参考 T2*-阈值技术获得的结果进行了比较。
使用 Dice 相似系数比较提取的实质之间的分割结果,进行线性回归和 Bland-Altman 分析,以比较自动和参考技术获得的 R2*结果。
从所有三种基于滤波器的方法估计的平均肝 R2值与参考方法具有极好的一致性(斜率 1.04-1.05,R> 0.99,P <0.001)。使用参考和自动方法提取的实质区域的平均重叠面积为 87-88%。T2-阈值技术将小血管和血管/组织边界处的像素包含在实质区域中,与自动方法相比,这可能导致 R2*值产生较小的偏差(<5%)。
参考和自动肝血管分割方法之间的极好一致性证实了所提出方法的准确性和稳健性。这种自动方法可以通过减少评估 HIC 的解释时间和操作员依赖性来改善放射科医生的工作流程,HIC 是指导铁过载管理的重要临床参数。
3 技术功效:第 2 阶段 J. Magn. Reson. Imaging 2018;47:1542-1551.