Suppr超能文献

R2*-MRI 定量评估肝脏铁过载的自动血管排除技术。

Automated vessel exclusion technique for quantitative assessment of hepatic iron overload by R2*-MRI.

机构信息

Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA.

出版信息

J Magn Reson Imaging. 2018 Jun;47(6):1542-1551. doi: 10.1002/jmri.25880. Epub 2017 Oct 30.

Abstract

BACKGROUND

Extraction of liver parenchyma is an important step in the evaluation of R2*-based hepatic iron content (HIC). Traditionally, this is performed by radiologists via whole-liver contouring and T2*-thresholding to exclude hepatic vessels. However, the vessel exclusion process is iterative, time-consuming, and susceptible to interreviewer variability.

PURPOSE

To implement and evaluate an automatic hepatic vessel exclusion and parenchyma extraction technique for accurate assessment of R2*-based HIC.

STUDY TYPE

Retrospective analysis of clinical data.

SUBJECTS

Data from 511 MRI exams performed on 257 patients were analyzed.

FIELD STRENGTH/SEQUENCE: All patients were scanned on a 1.5T scanner using a multiecho gradient echo sequence for clinical monitoring of HIC.

ASSESSMENT

An automated method based on a multiscale vessel enhancement filter was investigated for three input data types-contrast-optimized composite image, T2* map, and R2* map-to segment blood vessels and extract liver tissue for R2*-based HIC assessment. Segmentation and R2* results obtained using this automated technique were compared with those from a reference T2*-thresholding technique performed by a radiologist.

STATISTICAL TESTS

The Dice similarity coefficient was used to compare the segmentation results between the extracted parenchymas, and linear regression and Bland-Altman analyses were performed to compare the R2* results, obtained with the automated and reference techniques.

RESULTS

Mean liver R2* values estimated from all three filter-based methods showed excellent agreement with the reference method (slopes 1.04-1.05, R > 0.99, P < 0.001). Parenchyma areas extracted using the reference and automated methods had an average overlap area of 87-88%. The T2*-thresholding technique included small vessels and pixels at the vessel/tissue boundaries as parenchymal area, potentially causing a small bias (<5%) in R2* values compared to the automated method.

DATA CONCLUSION

The excellent agreement between reference and automated hepatic vessel segmentation methods confirms the accuracy and robustness of the proposed method. This automated approach might improve the radiologist's workflow by reducing the interpretation time and operator dependence for assessing HIC, an important clinical parameter that guides iron overload management.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1542-1551.

摘要

背景

提取肝脏实质是评估基于 R2的肝铁含量(HIC)的重要步骤。传统上,这是由放射科医生通过全肝轮廓勾画和 T2-阈值来排除肝血管完成的。然而,血管排除过程是迭代的,耗时的,并且容易受到复查者之间的差异的影响。

目的

实现并评估一种自动肝血管排除和实质提取技术,用于准确评估基于 R2*的 HIC。

研究类型

临床数据的回顾性分析。

受试者

对 257 名患者的 511 次 MRI 检查的数据进行了分析。

磁场强度/序列:所有患者均在 1.5T 扫描仪上使用多回波梯度回波序列进行扫描,用于 HIC 的临床监测。

评估

研究了一种基于多尺度血管增强滤波器的自动方法,用于三种输入数据类型-对比优化的组合图像,T2图和 R2图-以分割血管并提取用于基于 R2的 HIC 评估的肝脏组织。使用此自动技术获得的分割和 R2结果与由放射科医生执行的参考 T2*-阈值技术获得的结果进行了比较。

统计检验

使用 Dice 相似系数比较提取的实质之间的分割结果,进行线性回归和 Bland-Altman 分析,以比较自动和参考技术获得的 R2*结果。

结果

从所有三种基于滤波器的方法估计的平均肝 R2值与参考方法具有极好的一致性(斜率 1.04-1.05,R> 0.99,P <0.001)。使用参考和自动方法提取的实质区域的平均重叠面积为 87-88%。T2-阈值技术将小血管和血管/组织边界处的像素包含在实质区域中,与自动方法相比,这可能导致 R2*值产生较小的偏差(<5%)。

数据结论

参考和自动肝血管分割方法之间的极好一致性证实了所提出方法的准确性和稳健性。这种自动方法可以通过减少评估 HIC 的解释时间和操作员依赖性来改善放射科医生的工作流程,HIC 是指导铁过载管理的重要临床参数。

证据水平

3 技术功效:第 2 阶段 J. Magn. Reson. Imaging 2018;47:1542-1551.

相似文献

10
Quantification of liver fat in the presence of iron overload.铁过载情况下肝脏脂肪的定量分析。
J Magn Reson Imaging. 2017 Feb;45(2):428-439. doi: 10.1002/jmri.25382. Epub 2016 Jul 13.

本文引用的文献

9
Evaluation of SWI in children with sickle cell disease.镰状细胞病患儿的磁敏感加权成像评估
AJNR Am J Neuroradiol. 2014 May;35(5):1016-21. doi: 10.3174/ajnr.A3794. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验