Suppr超能文献

存在脂肪时肝脏铁定量的自回归滑动平均模型。

Autoregressive moving average modeling for hepatic iron quantification in the presence of fat.

机构信息

Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA.

出版信息

J Magn Reson Imaging. 2019 Nov;50(5):1620-1632. doi: 10.1002/jmri.26682. Epub 2019 Feb 13.

Abstract

BACKGROUND

Measuring hepatic R2* by fitting a monoexponential model to the signal decay of a multigradient-echo (mGRE) sequence noninvasively determines hepatic iron content (HIC). Concurrent hepatic steatosis introduces signal oscillations and confounds R2* quantification with standard monoexponential models.

PURPOSE

To evaluate an autoregressive moving average (ARMA) model for accurate quantification of HIC in the presence of fat using biopsy as the reference.

STUDY TYPE

Phantom study and in vivo cohort.

POPULATION

Twenty iron-fat phantoms covering clinically relevant R2* (30-800 s ) and fat fraction (FF) ranges (0-40%), and 10 patients (four male, six female, mean age 18.8 years).

FIELD STRENGTH/SEQUENCE: 2D mGRE acquisitions at 1.5 T and 3 T.

ASSESSMENT

Phantoms were scanned at both field strengths. In vivo data were analyzed using the ARMA model to determine R2* and FF values, and compared with biopsy results.

STATISTICAL TESTS

Linear regression analysis was used to compare ARMA R2* and FF results with those obtained using a conventional monoexponential model, complex-domain nonlinear least squares (NLSQ) fat-water model, and biopsy.

RESULTS

In phantoms and in vivo, all models produced R2* and FF values consistent with expected values in low iron and low/high fat conditions. For high iron and no fat phantoms, monoexponential and ARMA models performed excellently (slopes: 0.89-1.07), but NLSQ overestimated R2* (slopes: 1.14-1.36) and produced false FFs (12-17%) at 1.5 T; in high iron and fat phantoms, NLSQ (slopes: 1.02-1.16) outperformed monoexponential and ARMA models (slopes: 1.23-1.88). The results with NLSQ and ARMA improved in phantoms at 3 T (slopes: 0.96-1.04). In patients, mean R2*-HIC estimates for monoexponential and ARMA models were close to biopsy-HIC values (slopes: 0.90-0.95), whereas NLSQ substantially overestimated HIC (slope 1.4) and produced false FF values (4-28%) with very high SDs (15-222%) in patients with high iron overload and no steatosis.

DATA CONCLUSION

ARMA is superior in quantifying R2* and FF under high iron and no fat conditions, whereas NLSQ is superior for high iron and concurrent fat at 1.5 T. Both models give improved R2* and FF results at 3 T.

LEVEL OF EVIDENCE

2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1620-1632.

摘要

背景

通过拟合多梯度回波(mGRE)序列信号衰减的单指数模型,无创测量肝脏 R2可确定肝脏铁含量(HIC)。同时存在的肝脂肪变性会引入信号波动,并使用标准单指数模型对 R2的定量产生干扰。

目的

评估自回归移动平均(ARMA)模型在存在脂肪的情况下,通过活检作为参考,对 HIC 进行准确定量的能力。

研究类型

体模研究和体内队列研究。

人群

涵盖临床相关 R2*(30-800 s)和脂肪分数(FF)范围(0-40%)的 20 个铁脂肪体模,以及 10 名患者(4 名男性,6 名女性,平均年龄 18.8 岁)。

场强/序列:1.5 T 和 3 T 的 2D mGRE 采集。

评估

在两个场强下对体模进行扫描。使用 ARMA 模型对体内数据进行分析,以确定 R2*和 FF 值,并与活检结果进行比较。

统计检验

使用线性回归分析比较 ARMA R2*和 FF 结果与使用传统单指数模型、复域非线性最小二乘法(NLSQ)脂肪-水模型和活检获得的结果。

结果

在体模和体内,所有模型在低铁和高低脂肪条件下产生的 R2和 FF 值与预期值一致。对于高铁和无脂肪体模,单指数和 ARMA 模型表现出色(斜率:0.89-1.07),但 NLSQ 高估了 R2(斜率:1.14-1.36),并在 1.5 T 时产生错误的 FF(12-17%);在高铁和脂肪体模中,NLSQ(斜率:1.02-1.16)优于单指数和 ARMA 模型(斜率:1.23-1.88)。在 3 T 时,NLSQ 和 ARMA 的结果在体模中得到改善(斜率:0.96-1.04)。在患者中,单指数和 ARMA 模型的平均 R2*-HIC 估计值与活检-HIC 值接近(斜率:0.90-0.95),而 NLSQ 则大大高估了 HIC(斜率 1.4),并在没有铁过载和脂肪变性的患者中产生错误的 FF 值(4-28%),其标准差非常高(15-222%)。

数据结论

ARMA 在高铁和无脂肪条件下量化 R2和 FF 更具优势,而 NLSQ 在 1.5 T 时适用于高铁和并发脂肪。两种模型在 3 T 时都能得到更好的 R2和 FF 结果。

证据水平

2 技术功效阶段:2 J. Magn. Reson. Imaging 2019;50:1620-1632.

相似文献

1
Autoregressive moving average modeling for hepatic iron quantification in the presence of fat.
J Magn Reson Imaging. 2019 Nov;50(5):1620-1632. doi: 10.1002/jmri.26682. Epub 2019 Feb 13.
2
Quantitative Susceptibility Mapping Using a Multispectral Autoregressive Moving Average Model to Assess Hepatic Iron Overload.
J Magn Reson Imaging. 2021 Sep;54(3):721-727. doi: 10.1002/jmri.27584. Epub 2021 Feb 26.
8
Automated vessel exclusion technique for quantitative assessment of hepatic iron overload by R2*-MRI.
J Magn Reson Imaging. 2018 Jun;47(6):1542-1551. doi: 10.1002/jmri.25880. Epub 2017 Oct 30.
9
Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla.
Magn Reson Med. 2017 Nov;78(5):1839-1851. doi: 10.1002/mrm.26592. Epub 2017 Jan 16.
10
Quantification of liver fat in the presence of iron overload.
J Magn Reson Imaging. 2017 Feb;45(2):428-439. doi: 10.1002/jmri.25382. Epub 2016 Jul 13.

引用本文的文献

本文引用的文献

1
Demystifying liver iron concentration measurements with MRI.
Eur Radiol. 2018 Jun;28(6):2535-2536. doi: 10.1007/s00330-017-5199-8. Epub 2018 Jan 9.
2
Genome-Wide Study Links PNPLA3 Variant With Elevated Hepatic Transaminase After Acute Lymphoblastic Leukemia Therapy.
Clin Pharmacol Ther. 2017 Jul;102(1):131-140. doi: 10.1002/cpt.629. Epub 2017 Apr 4.
4
Quantification of liver fat in the presence of iron overload.
J Magn Reson Imaging. 2017 Feb;45(2):428-439. doi: 10.1002/jmri.25382. Epub 2016 Jul 13.
7
Liver enzyme levels and hepatic iron content in Fatty liver: a noninvasive assessment in general population by T2* mapping.
Acad Radiol. 2015 Jun;22(6):714-21. doi: 10.1016/j.acra.2015.01.011. Epub 2015 Mar 7.
8
Effect of inversion recovery fat suppression on hepatic R2* quantitation in transfusional siderosis.
AJR Am J Roentgenol. 2015 Mar;204(3):625-9. doi: 10.2214/AJR.14.12786.
9
Quantification of liver iron with MRI: state of the art and remaining challenges.
J Magn Reson Imaging. 2014 Nov;40(5):1003-21. doi: 10.1002/jmri.24584. Epub 2014 Mar 3.
10
Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease.
J Hepatol. 2014 Jan;60(1):69-77. doi: 10.1016/j.jhep.2013.09.002. Epub 2013 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验