Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
Department of Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA.
J Magn Reson Imaging. 2019 May;49(5):1475-1488. doi: 10.1002/jmri.26325. Epub 2018 Oct 25.
Current R2*-MRI techniques for measuring hepatic iron content (HIC) use various acquisition types and fitting models.
To evaluate the accuracy and precision of R2*-HIC acquisition and fitting methods.
Signal simulations, phantom study, and prospective in vivo cohort.
In all, 132 patients (58/74 male/female, mean age 17.7 years).
FIELD STRENGTH/SEQUENCE: 2D-multiecho gradient-echo (GRE) and ultrashort echo time (UTE) acquisitions at 1.5T.
Synthetic MR signals were created to mimic published GRE and UTE methods, using different R2* values (25-2000 s ) and signal-to-noise ratios (SNR). Phantoms with varying iron concentrations were scanned at 1.5T. In vivo data were analyzed from 132 patients acquired at 1.5T. R2* was estimated by fitting using three signal models. Accuracy and precision of R2* measurements for UTE acquisition parameters (SNR, echo spacing [ΔTE], maximum echo time [TE ]) and fitting methods were compared for simulated, phantom, and in vivo datasets.
R2* accuracy was determined from the relative error and by linear regression analysis. Precision was evaluated using coefficient of variation (CoV) analysis.
In simulations, all models had high R2* accuracy (error <5%) and precision (CoV <10%) for all SNRs, shorter ΔTE (≤0.5 msec), and longer TE (≥10.1 msec); except the constant offset model overestimated R2* at the lowest SNR. In phantoms and in vivo, all models produced similar R2* values for different SNRs and shorter ΔTEs (slopes: 0.99-1.06, R > 0.99, P < 0.001). In all experiments, R2* results degraded for high R2* values with longer ΔTE (≥1 msec). In vivo, shorter and longer TE gave similar R2* results (slopes: 1.02-1.06, R > 0.99, P < 0.001) for the noise subtraction model for 25≤R2*≤2000 s . However, both quadratic and constant offset models, using shorter TE (≤4.7 msec) overestimated R2* and yielded high CoVs up to ∼170% for low R2* (<250 s ).
UTE with TE ≥ 10.1 msec and ΔTE ≤ 0.5 msec yields accurate R2* estimates over the entire clinical HIC range. Monoexponential fitting with noise subtraction is the most robust signal model to changes in UTE parameters and achieves the highest R2* accuracy and precision.
2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1475-1488.
目前用于测量肝脏铁含量(HIC)的 R2*-MRI 技术使用了各种采集类型和拟合模型。
评估 R2*-HIC 采集和拟合方法的准确性和精密度。
信号模拟、体模研究和前瞻性体内队列研究。
共 132 例患者(58/74 例男性/女性,平均年龄 17.7 岁)。
磁场强度/序列:1.5T 上的 2D 多回波梯度回波(GRE)和超短回波时间(UTE)采集。
使用不同的 R2* 值(25-2000s)和信噪比(SNR),模拟发表的 GRE 和 UTE 方法,创建了合成 MR 信号。在 1.5T 下对具有不同铁浓度的体模进行扫描。对 132 例在 1.5T 下采集的患者进行体内数据分析。通过使用三种信号模型拟合来估计 R2*。对模拟、体模和体内数据集的 UTE 采集参数(SNR、回波间隔[ΔTE]、最大回波时间[TE])和拟合方法的 R2*测量精度和精度进行了比较。
通过相对误差和线性回归分析确定 R2*的准确性。使用变异系数(CoV)分析评估精度。
在模拟中,所有模型在所有 SNR、较短的ΔTE(≤0.5ms)和较长的 TE(≥10.1ms)下,均具有较高的 R2准确性(误差<5%)和精度(CoV<10%);只有在最低 SNR 下,常数偏移模型高估了 R2*。在体模和体内,所有模型在不同 SNR 和较短的ΔTE 下产生了相似的 R2*值(斜率:0.99-1.06,R>0.99,P<0.001)。在所有实验中,随着ΔTE(≥1ms)的增加,R2*值较高时,R2*结果会变差。在体内,噪声相减模型的较短和较长 TE(25≤R2*≤2000s)给出了相似的 R2*结果(斜率:1.02-1.06,R>0.99,P<0.001)。然而,对于较短的 TE(≤4.7ms),二次和常数偏移模型均高估了 R2,并且对于较低的 R2*(<250s),CoV 高达约 170%。
TE≥10.1ms 和 ΔTE≤0.5ms 的 UTE 可在整个临床 HIC 范围内获得准确的 R2估计。使用噪声相减的单指数拟合是对 UTE 参数变化最稳健的信号模型,可实现最高的 R2准确性和精密度。
2 技术功效:2 级。J. Magn. Reson. Imaging 2019;49:1475-1488.