Microsensors and Bioelectronics Laboratory, School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
School of Information & Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China.
Sensors (Basel). 2017 Oct 30;17(11):2489. doi: 10.3390/s17112489.
Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules.
生物合成信息素通讯是一个新兴的科学领域,它使用分子化合物进行信息传输、标记和生化接口;在从害虫管理到群体协调的 swarm 机器人等各个领域都有潜在的应用。我们的通讯系统包括一个化学发射器模块,它通过产生挥发性信息素来编码信息,以及一个化学接收器模块,它通过聚合物涂层的压电表面声波谐振器 (SAWR) 传感器来解码传输的比率信息。这种系统的灵感来自于昆虫之间基于信息素的通讯。从 SAWR 传感器响应中提取了十个特征,并使用多元分类技术进行分析,即线性判别分析 (LDA)、概率神经网络 (PNN) 和多层感知神经网络 (MLPNN) 方法,确定了最佳的特征子集。传感器信号的稳态和瞬态特征的组合显示出与 LDA 和 MLPNN 的优异性能。尽管 MLPNN 在 400 秒时达到了 100%的识别率,但在所有时间站中,PNN 在基于扩展数据集和相邻邻居的情况下表现出了最好的性能。在这种情况下,在将信息素混合物首次注入风洞后仅 200 秒,就成功地识别了 100%的混合物。我们相信,这种方法可以用于未来使用简单的空气传播分子混合物的化学通讯。