Hensel Zach
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
Dean's Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
PLoS One. 2017 Oct 30;12(10):e0187259. doi: 10.1371/journal.pone.0187259. eCollection 2017.
Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55-10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range.
合成生物学和微生物学领域的实验可受益于细胞间变异性(噪音)低且表达水平能在有效动态范围内精确调节的蛋白质表达系统。尽管在理解微生物基因调控的分子生物学方面取得了进展,但许多实验仍采用表现出高噪音且对诱导几乎呈全或无反应的蛋白质表达系统。我提出了一种表达系统,它整合了已知可降低基因表达噪音的元件:负反馈自动调节和双顺反子转录。通过随机模拟,我发现虽然负反馈自动调节可对诱导产生更渐进的反应,但为了将噪音降低到外在极限以下,可能需要对阻遏物和目标基因进行双顺反子表达。我合成了一个基于质粒的系统,该系统融入了这些原理,并在大肠杆菌细胞中研究了其特性,使用流式细胞术和荧光显微镜来表征诱导剂量反应、诱导/抑制动力学以及基因表达噪音。通过改变核糖体结合位点的强度,实现了每个细胞55 - 10,740个分子的表达水平,且噪音低于外在极限。单个菌株在大于20倍的动态范围内均可诱导。对不同调控网络的实验比较证实,双顺反子自动调节可降低噪音,并揭示了一个具有组成型表达转录阻遏物的传统表达系统存在出乎意料的高噪音。我提出一种混合的低噪音表达系统以扩大动态范围。