Suppr超能文献

新发高血压风险预测模型的最新进展:一项更新的系统评价。

Recent development of risk-prediction models for incident hypertension: An updated systematic review.

作者信息

Sun Dongdong, Liu Jielin, Xiao Lei, Liu Ya, Wang Zuoguang, Li Chuang, Jin Yongxin, Zhao Qiong, Wen Shaojun

机构信息

Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.

Beijing Lab for Cardiovascular Precision Medicine(PXM2017_014226_000037), Beijing, China.

出版信息

PLoS One. 2017 Oct 30;12(10):e0187240. doi: 10.1371/journal.pone.0187240. eCollection 2017.

Abstract

BACKGROUND

Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative.

METHODS

Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc.

RESULTS

From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI), age, smoking, blood pressure (BP) level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS) as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%.

CONCLUSIONS

The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.

摘要

背景

高血压是全球主要的健康威胁和主要的心血管疾病。由于临床干预在延缓疾病从高血压前期进展为高血压方面是有效的,因此用于识别高血压高危患者群体的诊断预测模型势在必行。

方法

检索了PubMed和Embase数据库中关于高血压预测模型或风险评分的合格报告。收集了研究数据,包括风险因素、统计方法、研究设计和参与者的特征、性能测量等。

结果

从检索到的文献中,选择了26项报告48个预测模型的研究。其中,20项报告使用传统风险因素(如体重指数(BMI)、年龄、吸烟、血压(BP)水平、高血压家族史和生化因素)研究已建立的模型,而6项报告使用遗传风险评分(GRS)作为预测因素。曲线下面积(AUC)范围为0.64至0.97,C统计量范围为60%至90%。

结论

传统模型仍然是高血压主要的风险预测模型,但最近,越来越多的模型开始将遗传因素纳入其模型预测指标。然而,这些遗传预测指标需要精心选择。目前报告的模型具有可接受的至良好的区分度和校准能力,但这些模型是否能应用于临床实践仍需要更多的验证和调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a3/5662179/860dbf85eb0d/pone.0187240.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验