Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305.
Department of Biology, Stanford University, Stanford, California 94305.
Plant Cell. 2017 Nov;29(11):2711-2726. doi: 10.1105/tpc.17.00149. Epub 2017 Oct 30.
In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant () of the green alga suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions. cannot grow photoautotrophically and photoacclimates poorly to increased illumination. We show that these phenotypes are due to reduced accumulation of photosystem I (PSI) reaction centers, the PSI electron acceptors 5'-monohydroxyphylloquinone and phylloquinone, and the loss of PSI and photosystem II antennae complexes during photoacclimation. The mutant resembles chlorophyll biosynthesis mutants phenotypically, but can be rescued by exogenous biliverdin IXα, the bilin produced by HMOX1. This rescue is independent of photosynthesis and is strongly dependent on blue light. RNA-seq comparisons of , genetically complemented , and chemically rescued reveal that tetrapyrrole biosynthesis and known photoreceptor and photosynthesis-related genes are not impacted in the mutant at the transcript level. We propose that a bilin-based, blue-light-sensing system within plastids evolved together with a bilin-based retrograde signaling pathway to ensure that a robust photosynthetic apparatus is sustained in light-grown Chlamydomonas.
在陆生植物中,线性四吡咯(bilin)基光物理传感器通过介导基因表达的大规模重编程来优化光合作用中的光捕获。但令人惊讶的是,许多绿藻基因组缺乏光物理基因。对绿藻的血红素加氧酶突变体 () 的研究表明,质体中 bilin 的生物合成对于核基因网络的适当调节是必不可少的,该网络涉及到黑暗到光照转变过程中的氧气解毒。 不能进行自养光合作用,并且对增加的光照光适应能力很差。我们表明,这些表型是由于 PSI 反应中心、PSI 电子受体 5'-单羟基叶绿醌和叶绿醌的积累减少,以及 PSI 和 PSII 天线复合物在光适应过程中的丢失所致。 突变体在表型上与叶绿素生物合成突变体相似,但可以被外源胆绿素 IXα(HMOX1 产生的 bilin)拯救。这种拯救与光合作用无关,强烈依赖蓝光。对 、遗传互补的 以及化学拯救的 进行的 RNA-seq 比较表明,在转录水平上,四吡咯生物合成和已知的光受体和光合作用相关基因在 突变体中不受影响。我们提出,质体中 bilin 基蓝光感应系统与 bilin 基逆行信号通路一起进化,以确保在光照生长的衣藻中维持强大的光合作用装置。