Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan.
Kyowa Hakko Bio Co., Ltd. Healthcare Products Development Center, Tsukuba-shi, Ibaraki 305-0841, Japan.
World J Gastroenterol. 2017 Sep 28;23(36):6650-6664. doi: 10.3748/wjg.v23.i36.6650.
To determine whether oral glutathione (GSH) administration can alleviate the effects of fasting-induced intestinal atrophy in the small intestinal mucosa.
Rats were divided into eight groups. One group was fed , another was fed and received oral GSH, and six groups were administrated saline (SA) or GSH orally during fasting. Mucosal height, apoptosis, and cell proliferation in the jejunum were histologically evaluated. iNOS protein expression (by immunohistochemistry), nitrite levels (by high performance liquid chromatography, as a measure of NO production), 8-hydroxydeoxyguanosine formation (by ELISA, indicating ROS levels), glutathione/oxidized glutathione (GSH/GSSG) ratio (by enzymatic colorimetric detection), and γ-glutamyl transpeptidase () mRNA levels in the jejunum (by semi-quantitative RT-PCR) were also estimated.
Oral GSH administration was demonstrated to drastically reduce fasting-induced intestinal atrophy in the jejunum. In particular, jejunal mucosal height was enhanced in GSH-treated animals compared to SA-treated animals [527.2 ± 6.9 for 50 mg/kg GSH, 567.6 ± 5.4 for 500 mg/kg GSH 483.1 ± 4.9 (μm), < 0.01 at 72 h]. This effect was consistent with decreasing changes in GSH-treated animals compared to SA-treated animals for iNOS protein staining [0.337 ± 0.016 for 50 mg/kg GSH, 0.317 ± 0.017 for 500 mg/kg GSH 0.430 ± 0.023 (area of staining part/area of tissue), < 0.01 at 72 h] and NO [2.99 ± 0.29 for 50 mg/kg GSH, 2.88 ± 0.19 for 500 mg/kg GSH 5.34 ± 0.35 (nmol/g tissue), < 0.01 at 72 h] and ROS [3.92 ± 0.46 for 50 mg/kg GSH, 4.58 ± 0.29 for 500 mg/kg GSH 6.42 ± 0.52 (8-OHdG pg/μg DNA), < 0.01, < 0.05 at 72 h, respectively] levels as apoptosis mediators in the jejunum. Furthermore, oral GSH administration attenuated cell proliferation decreases in the fasting jejunum [182.5 ± 1.9 for 500 mg/kg GSH 155.8 ± 3.4 (5-BrdU positive cells/10 crypts), < 0.01 at 72 h]. Notably, both GSH concentration and mRNA expression in the jejunum were also attenuated in rats following oral administration of GSH during fasting as compared with fasting alone [0.45 ± 0.12 0.97 ± 0.06 (nmol/mg tissue), < 0.01; 1.01 ± 0.11 2.79 ± 0.39 ( mRNA/ mRNA), < 0.01 for 500 mg/kg GSH at 48 h, respectively].
Oral GSH administration during fasting enhances jejunal regenerative potential to minimize intestinal mucosal atrophy by diminishing fasting-mediated ROS generation and enterocyte apoptosis and enhancing cell proliferation.
确定口服谷胱甘肽(GSH)是否可以减轻禁食引起的小肠黏膜萎缩。
将大鼠分为 8 组。一组给予标准饮食,另一组给予标准饮食并口服 GSH,6 组在禁食期间给予生理盐水(SA)或 GSH 口服。通过组织学评估空肠的黏膜高度、细胞凋亡和细胞增殖。通过免疫组织化学评估诱导型一氧化氮合酶(iNOS)蛋白表达(作为 NO 产生的衡量标准),通过高效液相色谱法测定亚硝酸盐水平(作为 NO 产生的衡量标准),通过 ELISA 测定 8-羟基脱氧鸟苷形成(作为 ROS 水平的衡量标准),通过酶比色检测测定谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)比(作为 ROS 水平的衡量标准),通过半定量 RT-PCR 测定空肠中的 γ-谷氨酰转肽酶()mRNA 水平。
口服 GSH 给药可明显减轻禁食引起的空肠萎缩。特别是,与 SA 处理的动物相比,GSH 处理的动物的空肠黏膜高度增加[50mg/kg GSH 为 527.2±6.9μm,500mg/kg GSH 为 567.6±5.4μm,500mg/kg GSH 为 483.1±4.9μm,<0.01在 72 小时]。这种效果与 GSH 处理的动物与 SA 处理的动物相比,iNOS 蛋白染色的变化一致[50mg/kg GSH 为 0.337±0.016,500mg/kg GSH 为 0.317±0.017,500mg/kg GSH 为 0.430±0.023(染色部分面积/组织面积),<0.01在 72 小时]和 NO[50mg/kg GSH 为 2.99±0.29nmol/g 组织,500mg/kg GSH 为 2.88±0.19nmol/g 组织,500mg/kg GSH 为 5.34±0.35nmol/g 组织,<0.01在 72 小时]和 ROS[50mg/kg GSH 为 3.92±0.46nmol/g 组织,500mg/kg GSH 为 4.58±0.29nmol/g 组织,500mg/kg GSH 为 6.42±0.52nmol/g 组织(8-OHdG pg/μg DNA),<0.01,<0.05在 72 小时]作为空肠中细胞凋亡的介质。此外,口服 GSH 给药可减轻禁食空肠中细胞增殖的减少[500mg/kg GSH 为 182.5±1.9 个细胞/10 个隐窝,155.8±3.4 个细胞/10 个隐窝,<0.01在 72 小时]。值得注意的是,与单纯禁食相比,禁食期间口服 GSH 也可降低大鼠空肠中的 GSH 浓度和 mRNA 表达[0.45±0.12 0.97±0.06(nmol/mg 组织),<0.01;1.01±0.11 2.79±0.39(mRNA/ mRNA),<0.01,500mg/kg GSH 在 48 小时时]。
禁食期间口服 GSH 可通过减少禁食介导的 ROS 生成和肠上皮细胞凋亡并增强细胞增殖来增强空肠的再生潜能,从而最大程度地减轻小肠黏膜萎缩。