Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland.
Adolphe Merkle Institute , Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
Biomacromolecules. 2017 Dec 11;18(12):4261-4270. doi: 10.1021/acs.biomac.7b01313. Epub 2017 Nov 15.
The affinity of surfaces toward proteins is found to be a key parameter to govern the synthesis of polymer brushes by surface-initiated biocatalytic atom transfer radical polymerization (SI-bioATRP). While the "ATRPase" hemoglobin (Hb) stimulates only a relatively slow growth of protein repellent brushes, the synthesis of thermoresponsive grafts can be regulated by switching the polymer's attraction toward proteins across its lower critical solution temperature (LCST). Poly(N-isopropylacrylamide) (PNIPAM) brushes are synthesized in discrete steps of thickness at temperatures above LCST, while the biocatalyst layer is refreshed at T < LCST. Multistep surface-initiated biocatalytic ATRP demonstrates a high degree of control, results in high chain end group fidelity and enables the synthesis of multiblock copolymer brushes under fully aqueous conditions. The activity of Hb can be further modulated by tuning the accessibility of the heme pocket within the protein. Hence, the multistep polymerization is accelerated at acid pH, where the enzyme undergoes a transition from its native to a molten globule conformation. The controlled synthesis of polymer brushes by multistep SI-bioATRP highlights how a biocatalytic synthesis of grafted polymer films can be precisely controlled through the modulation of the polymer's interfacial physicochemical properties, in particular of the affinity of the surface toward proteins. This is not only of importance to gain a predictive understanding of surface-confined enzymatic polymerizations, but also represents a new way to translate bioadhesion into a controlled functionalization of materials.
表面对蛋白质的亲和力被发现是控制通过表面引发生物催化原子转移自由基聚合(SI-bioATRP)合成聚合物刷的关键参数。虽然“ATRPase”血红蛋白(Hb)仅刺激蛋白质排斥刷的相对缓慢的生长,但通过在聚合物的吸引力与蛋白质之间切换跨越其低临界溶液温度(LCST),可以调节温敏接枝的合成。聚(N-异丙基丙烯酰胺)(PNIPAM)刷在高于 LCST 的温度下以离散的厚度步骤合成,而生物催化剂层在 T < LCST 时被刷新。多步表面引发生物催化 ATRP 表现出高度的控制,导致高链端基保真度,并能够在完全水相条件下合成多嵌段共聚物刷。通过调节蛋白质中血红素口袋的可及性,可以进一步调节 Hb 的活性。因此,在酸性 pH 下,多步聚合加速,酶经历从天然到熔融球蛋白构象的转变。通过多步 SI-bioATRP 控制聚合物刷的合成突出了如何通过调节聚合物的界面物理化学性质,特别是表面对蛋白质的亲和力,精确控制接枝聚合物膜的生物催化合成。这不仅对获得对表面受限酶聚合的预测性理解很重要,而且代表了将生物黏附转化为材料的受控功能化的新方法。