Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A
CIRIMAT, University of Toulouse, CNRS, INPT, UPS, Université Paul Sabatier, Faculté de Pharmacie, 35 Chemin des Maraichers, 31062 Toulouse cedex 9, France.
CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, CS 44362, 31030 Toulouse cedex 4, France.
Colloids Surf B Biointerfaces. 2017 Mar 1;151:143-155. doi: 10.1016/j.colsurfb.2016.12.007. Epub 2016 Dec 7.
Biomaterials surface design is critical for the control of materials and biological system interactions. Being regulated by a layer of molecular dimensions, bioadhesion could be effectively tailored by polymer surface grafting. Basically, this surface modification can be controlled by radical polymerization, which is a useful tool for this purpose. The aim of this review is to provide a comprehensive overview of the role of surface characteristics on bioadhesion properties. We place a particular focus on biomaterials functionalized with a brush surface, on presentation of grafting techniques for "grafting to" and "grafting from" strategies and on brush characterization methods. Since atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization are the most frequently used grafting techniques, their main characteristics will be explained. Through the example of poly(N-isopropylacrylamide) (PNIPAM) which is a widely used polymer allowing tuneable cell adhesion, smart surfaces involving PNIPAM will be presented with their main modern applications.
生物材料的表面设计对于控制材料与生物系统之间的相互作用至关重要。生物粘附受分子尺寸层的调节,可通过聚合物表面接枝有效地进行调整。基本上,这种表面改性可以通过自由基聚合来控制,自由基聚合是实现这一目的的有用工具。本综述的目的是全面概述表面特性对生物粘附性能的作用。我们特别关注具有刷状表面功能化的生物材料、“接枝到”和“从……接枝”策略的接枝技术介绍以及刷的表征方法。由于原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合是最常用的接枝技术,将对它们的主要特点进行解释。通过聚(N-异丙基丙烯酰胺)(PNIPAM)这一广泛使用的聚合物的例子,其可调节细胞粘附,将介绍涉及PNIPAM的智能表面及其主要现代应用。