Suppr超能文献

KRAS驱动的miR-29b表达是肿瘤抑制基因沉默所必需的。

KRAS-driven miR-29b expression is required for tumor suppressor gene silencing.

作者信息

Thakur Shilpa, Brenner Charles

机构信息

Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Oncotarget. 2017 Aug 19;8(43):74755-74766. doi: 10.18632/oncotarget.20364. eCollection 2017 Sep 26.

Abstract

KRAS activation drives DNA methylation and silencing of specific tumor suppressor genes (TSGs). We previously showed that the ERK pathway induces transcriptional repression of TET1, which results in conversion of TSG promoters from a hydroxymethylated, active state to a hypermethylated and silenced state. Here we identified miR-29b as a KRAS-induced molecule that represses TET1 expression. In KRAS-transformed cells, ectopic miR-29b inhibition restores expression of TET1, thereby reactivating TSGs by reducing methylation and restoring hydroxymethylation. Mining gene expression data of lung cancer cell lines identified additional TSGs suppressed by KRAS signaling whose expression was restored by inhibition of miR-29b and re-expression of TET1. Because KRAS changes TSG promoters from hydroxymethylated to hypermethylated with miR-29b-dependent silencing of TET1, we demonstrate a model in which DNMT1 is present on target promoters prior to KRAS transformation. In addition, we propose miR-29b as a potential circulating biomarker and target for rational treatment of specific malignancies.

摘要

KRAS激活驱动特定肿瘤抑制基因(TSGs)的DNA甲基化和沉默。我们之前表明,ERK途径诱导TET1的转录抑制,这导致TSG启动子从羟甲基化的活性状态转变为高甲基化和沉默状态。在这里,我们鉴定出miR-29b是一种KRAS诱导的分子,它抑制TET1的表达。在KRAS转化的细胞中,异位抑制miR-29b可恢复TET1的表达,从而通过减少甲基化和恢复羟甲基化来重新激活TSGs。挖掘肺癌细胞系的基因表达数据,发现了其他受KRAS信号抑制的TSGs,其表达通过抑制miR-29b和重新表达TET1得以恢复。由于KRAS通过miR-29b依赖的TET1沉默使TSG启动子从羟甲基化转变为高甲基化,我们证明了一种模型,其中DNMT1在KRAS转化之前就存在于靶启动子上。此外,我们提出miR-29b作为一种潜在的循环生物标志物和针对特定恶性肿瘤合理治疗的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2a8/5650376/9f1ac37a2ea1/oncotarget-08-74755-g001.jpg

相似文献

1
KRAS-driven miR-29b expression is required for tumor suppressor gene silencing.
Oncotarget. 2017 Aug 19;8(43):74755-74766. doi: 10.18632/oncotarget.20364. eCollection 2017 Sep 26.
2
Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation.
Cell Rep. 2014 Dec 11;9(5):1827-1840. doi: 10.1016/j.celrep.2014.10.063. Epub 2014 Nov 26.
3
MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells.
Oncotarget. 2017 Oct 31;8(60):102119-102133. doi: 10.18632/oncotarget.22183. eCollection 2017 Nov 24.
7
The regulatory roles of miRNA and methylation on oncogene and tumor suppressor gene expression in pancreatic cancer cells.
Biochem Biophys Res Commun. 2012 Aug 17;425(1):51-7. doi: 10.1016/j.bbrc.2012.07.047. Epub 2012 Jul 20.
9
is an indicator of prognosis in breast cancer patients.
Mol Clin Oncol. 2015 Jul;3(4):919-923. doi: 10.3892/mco.2015.565. Epub 2015 May 12.
10
Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation.
PLoS Genet. 2006 Mar;2(3):e40. doi: 10.1371/journal.pgen.0020040. Epub 2006 Mar 31.

引用本文的文献

1
ZBTB20 suppresses tumor growth in glioblastoma through activating the TET1/FAS/caspase‑3 pathway.
Oncol Lett. 2024 Jun 5;28(2):358. doi: 10.3892/ol.2024.14491. eCollection 2024 Aug.
3
MicroRNAs in Lung Cancer Oncogenesis and Tumor Suppression: How it Can Improve the Clinical Practice?
Curr Genomics. 2020 Aug;21(5):372-381. doi: 10.2174/1389202921999200630144712.
4
miR-29b inhibits non-small cell lung cancer progression by targeting STRN4.
Hum Cell. 2020 Jan;33(1):220-231. doi: 10.1007/s13577-019-00305-w. Epub 2019 Dec 7.

本文引用的文献

1
Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells.
Cell Rep. 2016 Jul 12;16(2):457-471. doi: 10.1016/j.celrep.2016.05.087. Epub 2016 Jun 23.
2
OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer.
Cancer Res. 2016 Jul 1;76(13):3666-70. doi: 10.1158/0008-5472.CAN-16-0359. Epub 2016 Jun 20.
3
miR-29b Mediates NF-κB Signaling in KRAS-Induced Non-Small Cell Lung Cancers.
Cancer Res. 2016 Jul 15;76(14):4160-9. doi: 10.1158/0008-5472.CAN-15-2580. Epub 2016 May 19.
4
Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.
Nat Rev Genet. 2016 May;17(5):284-99. doi: 10.1038/nrg.2016.13. Epub 2016 Mar 14.
6
KRAS mutant lung cancer: progress thus far on an elusive therapeutic target.
Clin Transl Med. 2015 Dec;4(1):35. doi: 10.1186/s40169-015-0075-0. Epub 2015 Dec 14.
7
Global Cancer Incidence and Mortality Rates and Trends--An Update.
Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16-27. doi: 10.1158/1055-9965.EPI-15-0578. Epub 2015 Dec 14.
8
miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies.
Oncotarget. 2015 May 30;6(15):12837-61. doi: 10.18632/oncotarget.3805.
9
Targeted therapy for non-small cell lung cancer: current standards and the promise of the future.
Transl Lung Cancer Res. 2015 Feb;4(1):36-54. doi: 10.3978/j.issn.2218-6751.2014.05.01.
10
The role of miR-29b in cancer: regulation, function, and signaling.
Onco Targets Ther. 2015 Mar 3;8:539-48. doi: 10.2147/OTT.S75899. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验