Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-shi, Kanagawa, Japan.
J Biol Rhythms. 2017 Dec;32(6):609-620. doi: 10.1177/0748730417735922. Epub 2017 Oct 31.
The suprachiasmatic nucleus (SCN) is an extremely robust self-sustained oscillator, containing virtually the same molecular clock present in other tissues in the body but, in addition, endowed with tight intercellular coupling dependent on multiple neurotransmitter systems that allow the SCN to function as the "master clock." Several studies on the circadian SCN transcriptome have been published and compared with the transcriptome of other tissues, but the recent focus shift toward the circadian metabolome and the importance of small molecules for circadian timekeeping has so far been limited to macroscopic tissues such as the liver. Here, we report the successful use of laser capture microdissection coupled with liquid chromatography/tandem mass spectrometry for the circadian profiling of SCN amino acids. Among 18 amino acids detected, 10 (55.5%) showed significant variations, particularly marked for proline, lysine, and histidine, with higher levels during the subjective day. Moreover, we compared SCN and cortical amino acid levels between wild-type and Bmal1-deficient animals, either in the whole body or specifically in the liver. Interestingly, lack of Bmal1 in the whole body led to a significant increase in most amino acids in the SCN but not in the cerebral cortex. In contrast, deletion of Bmal1 in the liver mostly affected cortical amino acid levels during the subjective day. This study demonstrates that laser capture microdissection can be used for the isolation of microscopic brain structures for metabolomic purposes and reveals interactions between liver and SCN amino acid metabolism.
视交叉上核(SCN)是一个极其强大的自我维持振荡器,包含与体内其他组织相同的分子钟,但除此之外,它还具有紧密的细胞间耦合,依赖于多种神经递质系统,使 SCN 能够作为“主钟”发挥作用。已经发表了几项关于昼夜节律 SCN 转录组的研究,并与其他组织的转录组进行了比较,但最近的焦点转向了昼夜节律代谢组,以及小分子对昼夜节律计时的重要性,迄今为止,这一焦点仅限于肝脏等宏观组织。在这里,我们报告了成功使用激光捕获显微切割与液相色谱/串联质谱联用进行 SCN 氨基酸的昼夜节律分析。在检测到的 18 种氨基酸中,有 10 种(55.5%)表现出显著的变化,尤其是脯氨酸、赖氨酸和组氨酸,在主观白天的水平更高。此外,我们比较了野生型和 Bmal1 缺陷动物的 SCN 和皮质氨基酸水平,无论是在整个动物体还是在肝脏中。有趣的是,Bmal1 在整个动物体中的缺失导致 SCN 中大多数氨基酸水平显著增加,但在大脑皮层中则没有。相比之下,Bmal1 在肝脏中的缺失主要影响主观白天的皮质氨基酸水平。这项研究表明,激光捕获显微切割可用于代谢组学目的的微观脑组织分离,并揭示了肝脏和 SCN 氨基酸代谢之间的相互作用。