Suppr超能文献

视交叉上核神经元中紧张性和突触 GABA 受体介导电流的日周期特性。

Diurnal properties of tonic and synaptic GABA receptor-mediated currents in suprachiasmatic nucleus neurons.

机构信息

Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.

Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.

出版信息

J Neurophysiol. 2021 Aug 1;126(2):637-652. doi: 10.1152/jn.00556.2020. Epub 2021 Jul 14.

Abstract

Synaptic and extrasynaptic GABA receptor (GABAR)-mediated neurotransmission is a critical component of the suprachiasmatic nucleus (SCN) neuronal network. However, the properties of the GABA tonic current () and its origin remain unexplored. Spontaneous GABA postsynaptic currents (sGPSCs) and were recorded from SCN neurons with the whole cell voltage-clamp technique at different times of the day. GABAR antagonists (bicuculline, gabazine, and picrotoxin) inhibited sGPSC and induced an outward shift of the holding current, which defined the amplitude. The sGPSC frequency, synaptic charge transfer, and amplitude all demonstrated significant diurnal rhythms, with peaks in the middle of the day [zeitgeber time (ZT)7-8] and nadirs at night (ZT19-20). The amplitude increased proportionally with the sGPSC frequency and synaptic charge transfer during the day and required action potential-mediated GABA release, which was confirmed by TTX application. The activation of presynaptic GABA receptors by baclofen did not significantly alter the of neurons with low-frequency sGPSC. The equilibrium potential (Eq) for was similar to the Eq for chloride and GABA receptor-activated currents. showed outward rectification at membrane potentials over the range of -70 to -10 mV and then was linear at voltages greater than -10 mV. GABAR containing α4-, α5-, and δ-subunits were expressed in SCN, and their contribution to was confirmed by application of the GABAR agonist 4,5,6,7-tetrahydroisoxazolo[5,4-]pyridin-3-ol (THIP) and the GABAR inverse agonist 11,12,13,13-tetrahydro-7-methoxy-9-oxo-9-imidazo[1,5-]pyrrolo[2,1-][1,4]benzodiazepine-1-carboxylic acid ethyl ester (L655,708). Thus, the was mediated by extrasynaptic GABARs activated predominantly by GABA diffusing out of GABAergic synapses. A tonic current () mediated by GABA receptors (GABARs) containing α4-, α5- and δ-subunits was observed in the suprachiasmatic nucleus. The amplitude strongly depended on the action potential-mediated synaptic release of GABA. The equilibrium potential for corresponds to that for GABA currents. The frequency of GABA postsynaptic currents and I amplitude increased during the day, with peak in the middle of the day, and then gradually declined with a nadir at night, thus showing a diurnal rhythm.

摘要

在视交叉上核(SCN)神经元中,突触和 extrasynapticGABA 受体(GABAR)介导的神经传递是一个关键组成部分。然而,GABA 紧张电流()的特性及其来源仍未得到探索。使用全细胞膜片钳技术在一天中的不同时间记录 SCN 神经元的 GABA 突触后电流(sGPSC)和。GABAR 拮抗剂(印防己毒素、gabazine 和 picrotoxin)抑制 sGPSC 并诱导保持电流的外向移位,这定义了的幅度。sGPSC 频率、突触电荷传递和幅度都表现出明显的昼夜节律,峰值出现在中午( Zeitgeber 时间(ZT)7-8),夜间低谷(ZT19-20)。在白天,随着 sGPSC 频率和突触电荷传递的增加,幅度呈比例增加,需要动作电位介导的 GABA 释放,这通过 TTX 应用得到证实。巴氯芬对 presynapticGABA 受体的激活并没有显著改变低频 sGPSC 神经元的。的平衡电位(Eq)与氯离子和 GABA 受体激活电流的 Eq 相似。在-70 到-10 mV 的膜电位范围内,表现出外向整流,然后在大于-10 mV 的电压下呈线性。SCN 中表达了含有 α4-、α5-和 δ-亚基的 GABAR,应用 GABAR 激动剂 4,5,6,7-四氢异恶唑并[5,4-c]吡啶-3-醇(THIP)和 GABAR 反向激动剂 11,12,13,13-四氢-7-甲氧基-9-氧代-9-咪唑并[1,5-a]吡咯并[2,1-c][1,4]苯并二氮杂卓-1-羧酸乙酯(L655,708)证实了对的贡献。因此,主要由 GABA 从 GABA 能突触中扩散出来激活的 extrasynapticGABAR 介导了。在视交叉上核中观察到由含有 α4-、α5-和 δ-亚基的 GABA 受体(GABAR)介导的紧张电流()。的幅度强烈依赖于动作电位介导的 GABA 突触释放。的平衡电位对应于 GABA 电流的平衡电位。GABA 突触后电流的频率和 I 幅度在白天增加,中午达到峰值,然后逐渐下降,夜间达到低谷,因此表现出昼夜节律。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a03f/8409954/34b29d07303b/jn-00556-2020r01.jpg

相似文献

1
Diurnal properties of tonic and synaptic GABA receptor-mediated currents in suprachiasmatic nucleus neurons.
J Neurophysiol. 2021 Aug 1;126(2):637-652. doi: 10.1152/jn.00556.2020. Epub 2021 Jul 14.
2
GABA transporters regulate tonic and synaptic GABA receptor-mediated currents in the suprachiasmatic nucleus neurons.
J Neurophysiol. 2017 Dec 1;118(6):3092-3106. doi: 10.1152/jn.00194.2017. Epub 2017 Aug 30.
8
Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices.
J Physiol. 1997 Feb 15;499 ( Pt 1)(Pt 1):141-59. doi: 10.1113/jphysiol.1997.sp021917.

引用本文的文献

3
GABAergic signalling in the suprachiasmatic nucleus is required for coherent circadian rhythmicity.
Eur J Neurosci. 2024 Dec;60(11):6652-6667. doi: 10.1111/ejn.16582. Epub 2024 Nov 18.
4
GABA receptor subunit composition regulates circadian rhythms in rest-wake and synchrony among cells in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2400339121. doi: 10.1073/pnas.2400339121. Epub 2024 Jul 24.
5
Alfaxalone does not have long-term effects on goldfish pyramidal neuron action potential properties or GABA receptor currents.
FEBS Open Bio. 2024 Apr;14(4):555-573. doi: 10.1002/2211-5463.13777. Epub 2024 Feb 11.
6
Expression of the vesicular GABA transporter within neuromedin S neurons sustains behavioral circadian rhythms.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2314857120. doi: 10.1073/pnas.2314857120. Epub 2023 Nov 29.
7
GABA tone regulation and its cognitive functions in the brain.
Nat Rev Neurosci. 2023 Sep;24(9):523-539. doi: 10.1038/s41583-023-00724-7. Epub 2023 Jul 26.
8
Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2301330120. doi: 10.1073/pnas.2301330120. Epub 2023 May 15.
9
Sleep and wake cycles dynamically modulate hippocampal inhibitory synaptic plasticity.
PLoS Biol. 2022 Nov 1;20(11):e3001812. doi: 10.1371/journal.pbio.3001812. eCollection 2022 Nov.

本文引用的文献

1
A noncanonical inhibitory circuit dampens behavioral sensitivity to light.
Science. 2020 May 1;368(6490):527-531. doi: 10.1126/science.aay3152.
2
GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3192-3202. doi: 10.1073/pnas.1906369117. Epub 2020 Jan 23.
3
Circadian Profiling of Amino Acids in the SCN and Cerebral Cortex by Laser Capture Microdissection-Mass Spectrometry.
J Biol Rhythms. 2017 Dec;32(6):609-620. doi: 10.1177/0748730417735922. Epub 2017 Oct 31.
4
Intracellular Chloride Regulation in AVP+ and VIP+ Neurons of the Suprachiasmatic Nucleus.
Sci Rep. 2017 Aug 31;7(1):10226. doi: 10.1038/s41598-017-09778-x.
5
GABA transporters regulate tonic and synaptic GABA receptor-mediated currents in the suprachiasmatic nucleus neurons.
J Neurophysiol. 2017 Dec 1;118(6):3092-3106. doi: 10.1152/jn.00194.2017. Epub 2017 Aug 30.
7
Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input.
J Physiol. 2017 Jun 1;595(11):3621-3649. doi: 10.1113/JP273850. Epub 2017 Apr 11.
8
The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.
Front Neuroendocrinol. 2017 Jan;44:35-82. doi: 10.1016/j.yfrne.2016.11.003. Epub 2016 Nov 25.
9
Localization and expression of GABA transporters in the suprachiasmatic nucleus.
Eur J Neurosci. 2015 Dec;42(12):3018-32. doi: 10.1111/ejn.13083. Epub 2015 Dec 8.
10
Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3911-9. doi: 10.1073/pnas.1420753112. Epub 2015 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验