Duruflé Harold, Hervé Vincent, Balliau Thierry, Zivy Michel, Dunand Christophe, Jamet Elisabeth
Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France.
INRS - Institut Armand Frappier, Laval, Canada.
Front Plant Sci. 2017 Oct 17;8:1802. doi: 10.3389/fpls.2017.01802. eCollection 2017.
Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to -glycosylation, -glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for -glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.
细胞壁蛋白(CWPs)通过参与发育过程和对环境信号的响应,在植物细胞壁中发挥关键且动态的作用。由于CWPs通过分泌途径运输,它们中的大多数会经历翻译后修饰(PTMs),这些修饰可以改变其生物学活性。糖基化是CWPs的主要PTMs之一,包括O-糖基化、N-糖基化和糖基磷脂酰肌醇化。这些PTMs中的每一种都发生在不同的氨基酸背景下,其中并非所有背景都已明确界定。本文探讨了脯氨酸(Pro)残基的羟基化,这是CWPs在羟脯氨酸(Hyp)残基上进行O-糖基化的前提条件。Hyp残基的位置在几种结构CWPs中已有详细描述,但在其他CWPs中却很少提及。在本文中,利用质谱数据对五种蛋白质进行了详细研究:其中一种(At4g38770,AtPRP4)是一种结构CWP,含有32.5%的Pro残基,排列成典型基序,其他蛋白质要么富含Pro残基(27 - 28%,At1g31580和At2g10940),要么Pro残基含量较低(6 - 8%,At1g09750和At3g08030)。已知的Pro羟基化规则能够较好地预测AtPRP4中Hyp的位置。然而,无论它们的Pro含量如何,这些规则都不适用于其他蛋白质。此外,在所有蛋白质的一些氨基酸基序中观察到了Pro羟基化模式的变异性,并描述了新的Pro羟基化模式。总之,这项工作表明Hyp残基存在于比最初描述更多的蛋白质家族中,并且它们各自的Pro羟基化模式可能不同。这项工作为完善现有的Pro羟基化编码铺平了道路。