Institute of Applied Physics, TU Wien , Wiedner Hauptstraße 8-10/134, 1040 Vienna, Austria.
Interdisciplinary Center for Molecular Materials and Computer-Chemistry-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nägelsbachstraße 25, 91052 Erlangen, Germany.
ACS Nano. 2017 Nov 28;11(11):11531-11541. doi: 10.1021/acsnano.7b06387. Epub 2017 Nov 8.
Changes in chemical and physical properties resulting from water adsorption play an important role in the characterization and performance of device-relevant materials. Studies of model oxides with well-characterized surfaces can provide detailed information that is vital for a general understanding of water-oxide interactions. In this work, we study single crystals of indium oxide, the prototypical transparent contact material that is heavily used in a wide range of applications and most prominently in optoelectronic technologies. Water adsorbs dissociatively already at temperatures as low as 100 K, as confirmed by scanning tunneling microscopy (STM), photoelectron spectroscopy, and density functional theory. This dissociation takes place on lattice sites of the defect-free surface. While the InO(111)-(1 × 1) surface offers four types of surface oxygen atoms (12 atoms per unit cell in total), water dissociation happens exclusively at one of them together with a neighboring pair of 5-fold coordinated In atoms. These O-In groups are symmetrically arranged around the 6-fold coordinated In atoms at the surface. At room temperature, the InO(111) surface thus saturates at three dissociated water molecules per unit cell, leading to a well-ordered hydroxylated surface with (1 × 1) symmetry, where the three water OH groups plus the surface OH groups are imaged together as one bright triangle in STM. Manipulations with the STM tip by means of voltage pulses preferentially remove the H atom of one surface OH group per triangle. The change in contrast due to strong local band bending provides insights into the internal structure of these bright triangles. The experimental results are further confirmed by quantitative simulations of the STM image corrugation.
水吸附所导致的化学和物理性质的变化,在与器件相关的材料的特性和性能研究中扮演着重要的角色。对具有良好表面特性的模型氧化物的研究可以提供对于理解水-氧化物相互作用至关重要的详细信息。在这项工作中,我们研究了氧化铟单晶,这是一种典型的透明接触材料,在广泛的应用中被大量使用,特别是在光电技术中。正如扫描隧道显微镜(STM)、光电子能谱和密度泛函理论所证实的那样,水在低至 100 K 的温度下就会发生离解吸附。这种离解发生在无缺陷表面的晶格位置上。虽然 InO(111)-(1 × 1)表面提供了四种类型的表面氧原子(每个单位细胞总共 12 个原子),但水的离解仅发生在其中一种氧原子上,同时还有一对 5 配位的 In 原子。这些 O-In 基团在表面的 6 配位 In 原子周围呈对称排列。在室温下,InO(111)表面因此在每个单位细胞中达到三个离解水分子的饱和,导致表面具有(1 × 1)对称性的有序羟基化,其中三个水分子的 OH 基团和表面 OH 基团一起在 STM 中成像为一个明亮的三角形。通过电压脉冲对 STM 针尖的操作,优先去除每个三角形的一个表面 OH 基团的 H 原子。由于强烈的局部能带弯曲引起的对比度变化,为这些明亮三角形的内部结构提供了深入的了解。实验结果进一步通过 STM 图像波纹的定量模拟得到了证实。