Ding Yishui, Chen Jie, Zheng Haihong, Jiang Yalong, Li Linbo, Geng Xiangrui, Lian Xu, Yang Lu, Zhang Ziqi, Zhang Kelvin Hongliang, Li Hexing, Zhong JianQiang, Chen Wei
School of Physics, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China.
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China.
Precis Chem. 2025 Mar 20;3(6):337-347. doi: 10.1021/prechem.5c00005. eCollection 2025 Jun 23.
The emergence of InO as an efficient catalyst for selective hydrogenation has attracted significant attention. However, the mechanism of hydrogen (H) dissociation on InO remains experimentally elusive. In this work, we show that the interaction of H with InO is strongly influenced by the presence of oxygen vacancies. Using a combination of near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), ultraviolet photoelectron spectroscopy (UPS), infrared reflection absorption spectroscopy (IRRAS), and density functional theory (DFT) calculations, we systematically investigated the interaction of H on well-defined oxidized InO(111) and partially reduced InO (111) surfaces. Our results reveal that H dissociates and adsorbs as hydroxyl groups (OH), which are exclusively stabilized on the InO (111) surface. The adsorbed hydrogen species act as electron donors, contributing to interfacial electron accumulation near the surface and inducing downward band bending. DFT calculations further indicate that oxygen vacancies in InO (111) are critical for facilitating the heterolytic dissociation of H, leading to the stabilization of In-H and OH species. These findings provide valuable implications for the catalytic behavior of indium oxide in hydrogenation and hydrogen-involved redox reactions.
氧化铟作为一种高效的选择性加氢催化剂的出现引起了广泛关注。然而,氢(H)在氧化铟上的解离机制在实验上仍不清楚。在这项工作中,我们表明H与氧化铟的相互作用受到氧空位的强烈影响。我们结合近常压X射线光电子能谱(NAP-XPS)、紫外光电子能谱(UPS)、红外反射吸收光谱(IRRAS)和密度泛函理论(DFT)计算,系统地研究了H在定义明确的氧化InO(111)和部分还原的InO(111)表面上的相互作用。我们的结果表明,H以羟基(OH)的形式解离并吸附,这些羟基仅稳定在InO(111)表面上。吸附的氢物种作为电子供体,有助于表面附近的界面电子积累并诱导能带向下弯曲。DFT计算进一步表明,InO(111)中的氧空位对于促进H的异裂解离至关重要,从而导致In-H和OH物种的稳定。这些发现为氧化铟在加氢和涉及氢的氧化还原反应中的催化行为提供了有价值的启示。