Suppr超能文献

微波焊接法制备镍-碳纳米管复合材料中的化学 Ni-C 键及其诱导的高频雷达频率电磁波吸收。

Chemical Ni-C Bonding in Ni-Carbon Nanotube Composite by a Microwave Welding Method and Its Induced High-Frequency Radar Frequency Electromagnetic Wave Absorption.

机构信息

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University , Hangzhou, Zhejiang 310026, P.R. China.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40412-40419. doi: 10.1021/acsami.7b07136. Epub 2017 Nov 8.

Abstract

In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance mechanism. Through a serial of detailed examinations, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrum, the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the Brunauer-Emmett-Teller and surface zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni, and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 to 18 GHz was found, which was induced by the Ni-C bonded interface. With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed less reflection loss.

摘要

在这项工作中,采用微波焊接方法在碳纳米管(CNT)和金属 Ni 之间的界面处构建化学 Ni-C 键合,以提供不同的表面电子分布,从而基于表面等离子体共振机制确定电磁波(EM)波吸收特性。通过一系列详细的检查,如 X 射线衍射、扫描电子显微镜、透射电子显微镜、高分辨率透射电子显微镜、X 射线光电子能谱和拉曼光谱,证实了 CNTs 和金属 Ni 之间预期的化学 Ni-C 键合。比表面积和表面zeta 电位测量揭示了与 CNTs、金属 Ni 和没有 Ni-C 键合的 Ni-CNT 复合材料相比,结构和电子密度的巨大演变。相应地,除了复合材料中 CNTs 和金属 Ni 的 EM 吸收之外,还发现了另一个从 10 到 18 GHz 的宽而强的 EM 吸收带,这是由 Ni-C 键合界面引起的。由于 Ni-CNT 复合材料具有更薄的厚度和更多暴露的 Ni-C 界面,其反射损耗更小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验