College of Chemistry and Molecular Engineering, Peking University , Yiheyuan Road 5, Beijing 100871, China.
Acc Chem Res. 2017 Nov 21;50(11):2737-2745. doi: 10.1021/acs.accounts.7b00366. Epub 2017 Nov 1.
All crystalline materials in nature, whether inorganic, organic, or biological, macroscopic or microscopic, have their own chemical and physical properties, which strongly depend on their atomic structures. Therefore, structure determination is extremely important in chemistry, physics, materials science, etc. In the past centuries, many techniques have been developed for structure determination. The most widely used one is X-ray crystallography (single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD)), and it remains the most important technique for structure determination of crystalline materials. Although SCXRD and PXRD are successful in many cases, a number of reasons limit their applications, such as SCXRD for nanosized crystals, intergrowth, and defects and PXRD for complex structures, multiphasic samples, impurities, peak overlaps, etc. Another most valuable technique for structure determination is electron crystallography (EC). With the electron as a probe, EC alone can also be used for structure determination, especially for crystals that are too small to be studied by SCXRD or too complex for PXRD. As electrons interact much more strongly with matter than X-rays do, both electron diffraction (ED) patterns and high-resolution transmission electron microscopy (HRTEM) images can be obtained from nanosized crystals. However, collecting a complete set of ED patterns or recording a good HRTEM image requires considerable expertise on the operation of electron microscopes and crystallography. The strong interactions between electrons and materials can also lead to dynamical effects and beam damage. These difficulties make structure determination from ED patterns and HRTEM images not straightforward. Recently, two three-dimensional (3D) electron diffraction techniques, automated electron diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed, which perform the data collection in an automated manner. Although the dynamical effects in the newly developed 3D electron diffraction techniques (ADT, RED) are reduced significantly, for some structures there are still problems with obtaining an initial model because of beam damage. The X-ray diffraction and EC methods discussed above are both powerful techniques but have their own limitations. In many complicated cases, one technique alone is not enough to solve the crystal structure, and different techniques that supply complementary structural information have to support each other for the complete structure determination. In this Account, we provide a summary of the advantages and disadvantages of X-ray diffraction (PXRD and SCXRD) and EC (HRTEM and ED) for structure determination and include a review of applications of X-ray diffraction and EC for solving complex structure problems such as peak overlap, impurities, pseudosymmetry and twinning, disordered frameworks, locating guests, aperiodic structures, etc. Some of the latest advances in structure determination are also presented briefly, namely, revealing hydrogen positions by ED, protein crystal structure solution by 3D electron diffraction, and structure determination using an X-ray free electron laser (XFEL).
所有天然的结晶物质,无论是无机的、有机的还是生物的,无论是宏观的还是微观的,都具有其自身的化学和物理特性,这些特性强烈依赖于其原子结构。因此,结构测定在化学、物理、材料科学等领域都极为重要。在过去的几个世纪中,已经开发出了许多用于结构测定的技术。其中应用最广泛的是 X 射线晶体学(单晶 X 射线衍射(SCXRD)和粉末 X 射线衍射(PXRD)),它仍然是结晶物质结构测定的最重要技术。尽管 SCXRD 和 PXRD 在许多情况下都取得了成功,但有一些原因限制了它们的应用,例如 SCXRD 不适用于纳米尺寸的晶体、混晶和缺陷,以及 PXRD 不适用于复杂结构、多相样品、杂质、峰重叠等。另一种用于结构测定的最有价值的技术是电子晶体学(EC)。电子作为探针,EC 也可以单独用于结构测定,特别是对于太小而无法通过 SCXRD 研究或太复杂而无法通过 PXRD 研究的晶体。由于电子与物质的相互作用比 X 射线要强得多,因此可以从纳米尺寸的晶体中获得电子衍射(ED)花样和高分辨率透射电子显微镜(HRTEM)图像。然而,要收集一套完整的 ED 花样或记录一个良好的 HRTEM 图像,需要对电子显微镜和晶体学有相当的操作专业知识。电子与材料的强烈相互作用也会导致动力学效应和束损伤。这些困难使得从 ED 花样和 HRTEM 图像中直接确定结构变得不那么容易。最近,已经开发出了两种三维(3D)电子衍射技术,即自动电子衍射层析术(ADT)和旋转电子衍射(RED),它们以自动化的方式进行数据采集。尽管在新开发的 3D 电子衍射技术(ADT、RED)中,动力学效应显著减少,但对于某些结构,由于束损伤,仍然存在获得初始模型的问题。上面讨论的 X 射线衍射(PXRD 和 SCXRD)和 EC(HRTEM 和 ED)方法都是强大的技术,但都有其自身的局限性。在许多复杂的情况下,仅使用一种技术不足以解决晶体结构问题,需要互补的结构信息来支持彼此,以完成完整的结构测定。在本专题介绍中,我们总结了 X 射线衍射(PXRD 和 SCXRD)和 EC(HRTEM 和 ED)在结构测定方面的优缺点,并回顾了 X 射线衍射和 EC 在解决复杂结构问题(如峰重叠、杂质、赝对称和孪晶、无序框架、定位客体、非周期性结构等)方面的应用。我们还简要介绍了结构测定方面的一些最新进展,即通过 ED 揭示氢位置、通过 3D 电子衍射解析蛋白质晶体结构以及使用自由电子激光(XFEL)进行结构测定。