Suppr超能文献

基于自训练的多光谱成像艺术绘画光谱图像重建

Self-training-based spectral image reconstruction for art paintings with multispectral imaging.

作者信息

Xu Peng, Xu Haisong, Diao Changyu, Ye Zhengnan

出版信息

Appl Opt. 2017 Oct 20;56(30):8461-8470. doi: 10.1364/AO.56.008461.

Abstract

A self-training-based spectral reflectance recovery method was developed to accurately reconstruct the spectral images of art paintings with multispectral imaging. By partitioning the multispectral images with the k-means clustering algorithm, the training samples are directly extracted from the art painting itself to restrain the deterioration of spectral estimation caused by the material inconsistency between the training samples and the art painting. Coordinate paper is used to locate the extracted training samples. The spectral reflectances of the extracted training samples are acquired indirectly with a spectroradiometer, and the circle Hough transform is adopted to detect the circle measuring area of the spectroradiometer. Through simulation and a practical experiment, the implementation of the proposed method is explained in detail, and it is verified to have better reflectance recovery performance than that using the commercial target and is comparable to the approach using a painted color target.

摘要

一种基于自训练的光谱反射率恢复方法被开发出来,用于通过多光谱成像准确重建艺术绘画的光谱图像。通过使用k均值聚类算法对多光谱图像进行划分,直接从艺术绘画本身提取训练样本,以抑制由于训练样本与艺术绘画之间的材料不一致而导致的光谱估计恶化。使用坐标纸来定位提取的训练样本。利用光谱辐射计间接获取提取的训练样本的光谱反射率,并采用圆形霍夫变换来检测光谱辐射计的圆形测量区域。通过模拟和实际实验,详细说明了所提方法的实现过程,并验证了该方法比使用商业目标具有更好的反射率恢复性能,且与使用彩色绘制目标的方法相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验