School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
Sensors (Basel). 2020 Nov 9;20(21):6399. doi: 10.3390/s20216399.
Spectral reconstruction algorithms recover spectra from RGB sensor responses. Recent methods-with the very best algorithms using deep learning-can already solve this problem with good spectral accuracy. However, the recovered spectra are physically incorrect in that they do not induce the RGBs from which they are recovered. Moreover, if the exposure of the RGB image changes then the recovery performance often degrades significantly-i.e., most contemporary methods only work for a fixed exposure. In this paper, we develop a physically accurate recovery method: the spectra we recover provably induce the same RGBs. Key to our approach is the idea that the set of spectra that integrate to the same RGB can be expressed as the sum of a unique fundamental metamer (spanned by the camera's spectral sensitivities and linearly related to the RGB) and a linear combination of a vector space of metameric blacks (orthogonal to the spectral sensitivities). Physically plausible spectral recovery resorts to finding a spectrum that adheres to the fundamental metamer plus metameric black decomposition. To further ensure spectral recovery that is robust to changes in exposure, we incorporate exposure changes in the training stage of the developed method. In experiments we evaluate how well the methods recover spectra and predict the actual RGBs and RGBs under different viewing conditions (changing illuminations and/or cameras). The results show that our method generally improves the state-of-the-art spectral recovery (with more stabilized performance when exposure varies) and provides zero colorimetric error. Moreover, our method significantly improves the color fidelity under different viewing conditions, with up to a 60% reduction in some cases.
光谱重建算法可从 RGB 传感器响应中恢复光谱。最近的方法——使用深度学习的最佳算法——已经可以很好地解决这个问题,具有很好的光谱精度。然而,重建的光谱在物理上是不正确的,因为它们不能从恢复的光谱中诱导出 RGB。此外,如果 RGB 图像的曝光发生变化,那么恢复性能通常会显著下降——也就是说,大多数现代方法仅适用于固定的曝光。在本文中,我们开发了一种物理上准确的恢复方法:我们恢复的光谱可证明会诱导出相同的 RGB。我们方法的关键是这样一个想法,即积分到相同 RGB 的光谱集可以表示为唯一基本同色异谱体(由相机的光谱灵敏度扩展,并与 RGB 线性相关)和同色异谱体的线性组合的和(与光谱灵敏度正交)。合理的光谱恢复依赖于找到一个符合基本同色异谱体和同色异谱体黑色分解的光谱。为了进一步确保对曝光变化具有鲁棒性的光谱恢复,我们在开发的方法的训练阶段纳入了曝光变化。在实验中,我们评估了这些方法恢复光谱的效果,以及预测实际 RGB 和不同观察条件(改变照明和/或相机)下的 RGB 的效果。结果表明,我们的方法通常可以提高光谱恢复的最新水平(曝光变化时性能更稳定),并提供零色度误差。此外,我们的方法在不同的观察条件下显著提高了颜色保真度,在某些情况下最多可降低 60%。