Suppr超能文献

基于回归的光谱重建优化。

On the Optimization of Regression-Based Spectral Reconstruction.

机构信息

School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

出版信息

Sensors (Basel). 2021 Aug 19;21(16):5586. doi: 10.3390/s21165586.

Abstract

Spectral reconstruction (SR) algorithms attempt to recover hyperspectral information from RGB camera responses. Recently, the most common metric for evaluating the performance of SR algorithms is the Mean Relative Absolute Error (MRAE)-an ℓ1 relative error (also known as percentage error). Unsurprisingly, the leading algorithms based on Deep Neural Networks (DNN) are trained and tested using the MRAE metric. In contrast, the much simpler regression-based methods (which actually can work tolerably well) are trained to optimize a generic Root Mean Square Error (RMSE) and then tested in MRAE. Another issue with the regression methods is-because in SR the linear systems are large and ill-posed-that they are necessarily solved using regularization. However, hitherto the regularization has been applied at a spectrum level, whereas in MRAE the errors are measured per wavelength (i.e., per spectral channel) and then averaged. The two aims of this paper are, first, to reformulate the simple regressions so that they minimize a relative error metric in training-we formulate both ℓ2 and ℓ1 relative error variants where the latter is MRAE-and, second, we adopt a per-channel regularization strategy. Together, our modifications to how the regressions are formulated and solved leads to up to a 14% increment in mean performance and up to 17% in worst-case performance (measured with MRAE). Importantly, our best result narrows the gap between the regression approaches and the leading DNN model to around 8% in mean accuracy.

摘要

光谱重建 (SR) 算法试图从 RGB 相机响应中恢复高光谱信息。最近,评估 SR 算法性能最常用的指标是均方相对绝对误差 (MRAE)-一种 ℓ1 相对误差(也称为百分比误差)。毫不奇怪,基于深度神经网络 (DNN) 的领先算法是使用 MRAE 指标进行训练和测试的。相比之下,更简单的基于回归的方法(实际上可以很好地工作)是通过优化通用均方根误差 (RMSE) 进行训练的,然后在 MRAE 中进行测试。回归方法的另一个问题是——因为在 SR 中线性系统很大且不适定——它们必须使用正则化来求解。然而,迄今为止,正则化是在谱级应用的,而在 MRAE 中,误差是按波长(即每个光谱通道)测量的,然后进行平均。本文的两个目的是,首先,重新制定简单的回归,以便在训练中最小化相对误差指标——我们制定了 ℓ2 和 ℓ1 相对误差变体,后者是 MRAE——其次,我们采用了逐通道正则化策略。我们对回归的制定和求解方式的修改,使平均性能提高了 14%,最坏情况下的性能提高了 17%(以 MRAE 衡量)。重要的是,我们的最佳结果将回归方法和领先的 DNN 模型之间的差距缩小到平均准确率的 8%左右。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13b2/8402277/c6183f3aa7fe/sensors-21-05586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验