Department of Molecular Medicine, "La Sapienza" University of Rome, Roma, Italy.
Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
Sci Rep. 2017 Nov 1;7(1):14836. doi: 10.1038/s41598-017-13865-4.
Here we provide demonstration that image mean square displacement (iMSD) analysis is a fast and robust platform to address living matter dynamic organization at the level of sub-cellular nanostructures (e.g. endocytic vesicles, early/late endosomes, lysosomes), with no a-priori knowledge of the system, and no need to extract single trajectories. From each iMSD, a unique triplet of average parameters (namely: diffusivity, anomalous coefficient, size) are extracted and represented in a 3D parametric space, where clustering of single-cell points readily defines the structure "dynamic fingerprint", at the whole-cell-population level. We demonstrate that different sub-cellular structures segregate into separate regions of the parametric space. The potency of this approach is further proved through application to two exemplary, still controversial, cases: i) the intracellular trafficking of lysosomes, comprising both free diffusion and directed motion along cytoskeletal components, and ii) the evolving dynamic properties of macropinosomes, passing from early to late stages of intracellular trafficking. We strongly believe this strategy may represent a flexible, multiplexed platform to address the dynamic properties of living matter at the sub-cellular level, both in the physiological and pathological state.
在这里,我们提供了一个演示,证明图像均方位移(iMSD)分析是一种快速而强大的平台,可以在亚细胞纳米结构(例如内吞小泡、早期/晚期内体、溶酶体)水平上解决生命物质的动态组织,而无需事先了解系统,也无需提取单个轨迹。从每个 iMSD 中,提取出一组独特的三个平均参数(即扩散系数、异常系数、大小),并在三维参数空间中表示,其中单细胞点的聚类可以在整个细胞群体水平上轻松定义结构“动态指纹”。我们证明,不同的亚细胞结构可以分离到参数空间的不同区域。通过应用于两个具有代表性但仍存在争议的案例,进一步证明了这种方法的有效性:i)溶酶体的细胞内运输,包括沿着细胞骨架成分的自由扩散和定向运动,以及 ii)巨胞饮泡的动态特性的演变,从细胞内运输的早期阶段到晚期阶段。我们坚信,这种策略可能代表了一种灵活的、多重的平台,可以在生理和病理状态下解决亚细胞水平上生命物质的动态特性。