Suppr超能文献

基于期望最大化(EM)算法,用于从sCMOS相机数据中对奥恩斯坦-乌伦贝克运动进行单粒子追踪。

EM-based algorithms for single particle tracking of Ornstein-Uhlenbeck motion from sCMOS camera data.

作者信息

Lin Ye, Andersson Sean B

机构信息

Division of Systems Engineering, Boston, MA 02215, USA.

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.

出版信息

Proc Am Control Conf. 2021 May;2021:3945-3950. doi: 10.23919/acc50511.2021.9483034. Epub 2021 Jul 28.

Abstract

Single particle tracking plays an important role in studying physical and kinetic properties of biomolecules. In this work, we introduce the application of Expectation Maximization (EM) based algorithms for solving localization and parameter estimation problems in SPT using data captured from scientific complementary metal-oxide semiconductor (sCMOS) camera sensors. Two representative methods are considered for generating the filtered and smoothed distributions needed by EM: Sequential Monte Carlo - EM, and Unscented - EM. The SMC method uses particle filtering and particle smoothing to handle general distributions, while the U scheme reduces the computational burden through the use of an unscented Kalman Filter and an unscented Rauch-Tung Striebel Smoother. We also investigate the influence of the number of images in the dataset on the final estimates through intensive simulations as well as the computational efficiency of the two methods.

摘要

单粒子追踪在研究生物分子的物理和动力学性质方面发挥着重要作用。在这项工作中,我们介绍了基于期望最大化(EM)算法的应用,用于使用从科学互补金属氧化物半导体(sCMOS)相机传感器捕获的数据来解决单粒子追踪中的定位和参数估计问题。考虑了两种代表性方法来生成EM所需的滤波和平滑分布:顺序蒙特卡罗 - EM和无迹 - EM。SMC方法使用粒子滤波和粒子平滑来处理一般分布,而U方案通过使用无迹卡尔曼滤波器和无迹Rauch-Tung-Striebel平滑器来减轻计算负担。我们还通过密集模拟研究了数据集中图像数量对最终估计的影响以及这两种方法的计算效率。

相似文献

本文引用的文献

8
Method for simultaneous localization and parameter estimation in particle tracking experiments.粒子追踪实验中同时进行定位和参数估计的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052707. doi: 10.1103/PhysRevE.92.052707. Epub 2015 Nov 5.
9
Optimal point spread function design for 3D imaging.用于三维成像的最佳点扩散函数设计
Phys Rev Lett. 2014 Sep 26;113(13):133902. doi: 10.1103/PhysRevLett.113.133902.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验