Faculty of Pharmacy, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.
RAND Corporation, Santa Monica, CA 90401-3208, USA.
Stat Med. 2018 Feb 20;37(4):530-543. doi: 10.1002/sim.7527. Epub 2017 Nov 2.
Causal inference practitioners are routinely presented with the challenge of model selection and, in particular, reducing the size of the covariate set with the goal of improving estimation efficiency. Collaborative targeted minimum loss-based estimation (CTMLE) is a general framework for constructing doubly robust semiparametric causal estimators that data-adaptively limit model complexity in the propensity score to optimize a preferred loss function. This stepwise complexity reduction is based on a loss function placed on a strategically updated model for the outcome variable through which the error is assessed using cross-validation. We demonstrate how the existing stepwise variable selection CTMLE can be generalized using regression shrinkage of the propensity score. We present 2 new algorithms that involve stepwise selection of the penalization parameter(s) in the regression shrinkage. Simulation studies demonstrate that, under a misspecified outcome model, mean squared error and bias can be reduced by a CTMLE procedure that separately penalizes individual covariates in the propensity score. We demonstrate these approaches in an example using electronic medical data with sparse indicator covariates to evaluate the relative safety of 2 similarly indicated asthma therapies for pregnant women with moderate asthma.
因果推断从业者经常面临模型选择的挑战,特别是要缩小协变量集的大小,以提高估计效率。基于协同靶向最小损失的估计(CTMLE)是一种构建双重稳健半参数因果估计量的通用框架,它可以自适应地限制倾向评分中的模型复杂度,以优化首选的损失函数。这种逐步的复杂性降低是基于通过交叉验证使用损失函数对结果变量进行评估的策略性更新模型。我们展示了如何使用倾向评分的回归收缩来推广现有的逐步变量选择 CTMLE。我们提出了 2 种新的算法,涉及回归收缩中惩罚参数的逐步选择。模拟研究表明,在结果模型指定不当的情况下,通过分别对倾向评分中的个别协变量进行惩罚的 CTMLE 程序,可以降低均方误差和偏差。我们在一个使用电子医疗数据的示例中演示了这些方法,该示例使用稀疏指示性协变量评估 2 种类似指示的哮喘治疗方法对中度哮喘孕妇的相对安全性。