Suppr超能文献

具有自密封功能的多孔静电纺纤维:一种用于捕获生物大分子的有效策略。

Porous Electrospun Fibers with Self-Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules.

机构信息

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.

出版信息

Small. 2017 Dec;13(47). doi: 10.1002/smll.201701949. Epub 2017 Nov 2.

Abstract

Stimuli-responsive porous polymer materials have promising biomedical application due to their ability to trap and release biomacromolecules. In this work, a class of highly porous electrospun fibers is designed using polylactide as the polymer matrix and poly(ethylene oxide) as a porogen. Carbon nanotubes (CNTs) with different concentrations are further impregnated onto the fibers to achieve self-sealing functionality induced by photothermal conversion upon light irradiation. The fibers with 0.4 mg mL of CNTs exhibit the optimum encapsulation efficiency of model biomacromolecules such as dextran, bovine serum albumin, and nucleic acids, although their photothermal conversion ability is slightly lower than the fibers with 0.8 mg mL of CNTs. Interestingly, reversible reopening of the surface pores is accomplished with the degradation of PLA, affording a further possibility for sustained release of biomacromolecules after encapsulation. Effects of CNT loading on fiber morphology, structure, thermal/mechanical properties, degradation, and cell viability are also investigated. This novel class of porous electrospun fibers with self-sealing capability has great potential to serve as an enabling strategy for trapping/release of biomacromolecules with promising applications in, for example, preventing inflammatory diseases by scavenging cytokines from interstitial body fluids.

摘要

刺激响应型多孔聚合物材料因其能够捕获和释放生物大分子而在生物医学领域具有广阔的应用前景。在这项工作中,以聚乳酸为聚合物基体,聚氧化乙烯为致孔剂,设计了一类具有高多孔性的静电纺纤维。进一步将不同浓度的碳纳米管(CNTs)浸渍到纤维上,以实现光照射下光热转换诱导的自密封功能。在 CNTs 浓度为 0.4mg/mL 的纤维中,模型生物大分子如葡聚糖、牛血清白蛋白和核酸的包封效率最佳,尽管其光热转换能力略低于 CNTs 浓度为 0.8mg/mL 的纤维。有趣的是,通过 PLA 的降解实现了表面孔的可逆重新打开,为封装后生物大分子的持续释放提供了进一步的可能性。还研究了 CNT 负载量对纤维形貌、结构、热/机械性能、降解和细胞活力的影响。这种具有自密封能力的新型多孔静电纺纤维具有很大的潜力,可以作为捕获/释放生物大分子的一种有效策略,例如通过从间质体液中清除细胞因子来预防炎症性疾病。

相似文献

引用本文的文献

5
Safety Evaluation of Nanotechnology Products.纳米技术产品的安全性评估
Pharmaceutics. 2021 Oct 4;13(10):1615. doi: 10.3390/pharmaceutics13101615.

本文引用的文献

5
Scavenging nucleic acid debris to combat autoimmunity and infectious disease.清除核酸碎片以对抗自身免疫和传染病。
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9728-33. doi: 10.1073/pnas.1607011113. Epub 2016 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验