Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Cientificas, 41012, Sevilla, Spain.
Plant J. 2018 Jan;93(1):107-118. doi: 10.1111/tpj.13761. Epub 2017 Dec 2.
Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.
蔗糖非发酵相关蛋白激酶(SnRKs)对于植物生长和应激反应很重要。这个家族有三个分支:SnRK1、SnRK2 和 SnRK3。尽管植物 SnRKs 被认为是被上游激酶激活的,但总体机制仍然不清楚。双生病毒 Rep-相互作用激酶(GRIK)1 和 GRIK2 磷酸化 SnRK1,后者参与糖/能量感应,grik1-1 grik2-1 双突变体在常规生长条件下表现出生长迟缓。在这项研究中,我们建立了另一个含有不同基因 GRIK1(grik1-2 grik2-1)等位基因的拟南芥突变体系,其生长方式与野生型相似,使我们能够在应激条件下评估 GRIKs 的功能。在 grik1-2 grik2-1 双突变体中,SnRK1.1 的磷酸化减少,但没有完全消除,表明 grik1-2 突变是一个弱等位基因。除了对葡萄糖高度敏感外,grik1-2 grik2-1 突变体对高盐敏感,表明 GRIKs 也参与盐信号通路。盐过度敏感(SOS)2 是 SnRK3 亚家族的成员,是对盐响应的关键介质。GRIK1 在体外磷酸化 SOS2,导致 SOS2 的激酶活性升高。野生型 SOS2 可使 sos2 的耐盐性恢复正常水平,但突变型 SOS2(缺乏 GRIK1 磷酸化的 T168 残基)则不能。在酵母重组系统中也证明了 GRIK1 对 SOS2 的激活。我们的结果表明,GRIKs 磷酸化并激活 SnRK1 和 SnRK3 家族的其他成员,它们在体内多种信号通路中发挥重要作用。