Suppr超能文献

探索视觉引导在基于运动想象的脑机接口中的作用:一项基于脑电图微状态的特定功能连接性研究。

Exploring the Role of Visual Guidance in Motor Imagery-Based Brain-Computer Interface: An EEG Microstate-Specific Functional Connectivity Study.

作者信息

Wang Tianjun, Chen Yun-Hsuan, Sawan Mohamad

机构信息

Center of Excellence in Biomedical Research on Advanced Integrated-on-Chips Neurotechnologies (CenBRAIN Neurotech), School of Engineering, Westlake University, Hangzhou 310030, China.

School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

出版信息

Bioengineering (Basel). 2023 Feb 21;10(3):281. doi: 10.3390/bioengineering10030281.

Abstract

Motor imagery-based brain-computer interfaces (BCI) have been widely recognized as beneficial tools for rehabilitation applications. Moreover, visually guided motor imagery was introduced to improve the rehabilitation impact. However, the reported results to support these techniques remain unsatisfactory. Electroencephalography (EEG) signals can be represented by a sequence of a limited number of topographies (microstates). To explore the dynamic brain activation patterns, we conducted EEG microstate and microstate-specific functional connectivity analyses on EEG data under motor imagery (MI), motor execution (ME), and guided MI (GMI) conditions. By comparing sixteen microstate parameters, the brain activation patterns induced by GMI show more similarities to ME than MI from a microstate perspective. The mean duration and duration of microstate four are proposed as biomarkers to evaluate motor condition. A support vector machine (SVM) classifier trained with microstate parameters achieved average accuracies of 80.27% and 66.30% for ME versus MI and GMI classification, respectively. Further, functional connectivity patterns showed a strong relationship with microstates. Key node analysis shows clear switching of key node distribution between brain areas among different microstates. The neural mechanism of the switching pattern is discussed. While microstate analysis indicates similar brain dynamics between GMI and ME, graph theory-based microstate-specific functional connectivity analysis implies that visual guidance may reduce the functional integration of the brain network during MI. Thus, we proposed that combined MI and GMI for BCI can improve neurorehabilitation effects. The present findings provide insights for understanding the neural mechanism of microstates, the role of visual guidance in MI tasks, and the experimental basis for developing new BCI-aided rehabilitation systems.

摘要

基于运动想象的脑机接口(BCI)已被广泛认为是康复应用的有益工具。此外,引入视觉引导的运动想象以提高康复效果。然而,支持这些技术的报告结果仍不尽人意。脑电图(EEG)信号可以由有限数量的地形图(微状态)序列表示。为了探索动态脑激活模式,我们对运动想象(MI)、运动执行(ME)和引导运动想象(GMI)条件下的EEG数据进行了EEG微状态和特定微状态功能连接分析。通过比较16个微状态参数,从微状态角度来看,GMI诱导的脑激活模式与ME比与MI更相似。提出将微状态四的平均持续时间和持续时间作为评估运动状态的生物标志物。用微状态参数训练的支持向量机(SVM)分类器在ME与MI和GMI分类中的平均准确率分别达到80.27%和66.30%。此外,功能连接模式与微状态显示出很强的关系。关键节点分析表明不同微状态之间脑区关键节点分布的明显切换。讨论了切换模式的神经机制。虽然微状态分析表明GMI和ME之间的脑动力学相似,但基于图论的特定微状态功能连接分析表明视觉引导可能会降低MI期间脑网络的功能整合。因此,我们提出将MI和GMI结合用于BCI可以提高神经康复效果。本研究结果为理解微状态的神经机制、视觉引导在MI任务中的作用以及开发新的BCI辅助康复系统提供了实验依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc94/10044873/84a88abcc330/bioengineering-10-00281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验