Suppr超能文献

基于 SSSEP 的脑机接口中使用低成本硬币型电机的高频振动刺激。

High-Frequency Vibrating Stimuli Using the Low-Cost Coin-Type Motors for SSSEP-Based BCI.

机构信息

Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.

Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.

出版信息

Biomed Res Int. 2022 Aug 25;2022:4100381. doi: 10.1155/2022/4100381. eCollection 2022.

Abstract

Steady-state somatosensory-evoked potential- (SSSEP-) based brain-computer interfaces (BCIs) have been applied for assisting people with physical disabilities since it does not require gaze fixation or long-time training. Despite the advancement of various noninvasive electroencephalogram- (EEG-) based BCI paradigms, researches on SSSEP with the various frequency range and related classification algorithms are relatively unsettled. In this study, we investigated the feasibility of classifying the SSSEP within high-frequency vibration stimuli induced by a versatile coin-type eccentric rotating mass (ERM) motor. Seven healthy subjects performed selective attention (SA) tasks with vibration stimuli attached to the left and right index fingers. Three EEG feature extraction methods, followed by a support vector machine (SVM) classifier, have been tested: common spatial pattern (CSP), filter-bank CSP (FBCSP), and mutual information-based best individual feature (MIBIF) selection after the FBCSP. Consequently, the FBCSP showed the highest performance at 71.5 ± 2.5% for classifying the left and right-hand SA tasks than the other two methods (i.e., CSP and FBCSP-MIBIF). Based on our findings and approach, the high-frequency vibration stimuli using low-cost coin motors with the FBCSP-based feature selection can be potentially applied to developing practical SSSEP-based BCI systems.

摘要

基于稳态体感诱发电位 (SSSEP) 的脑-机接口 (BCI) 已被应用于辅助身体残疾人士,因为它不需要注视固定或长时间训练。尽管各种非侵入性脑电图 (EEG) 为基础的 BCI 范式取得了进展,但在各种频率范围内的 SSSEP 研究及其相关分类算法仍相对不稳定。在这项研究中,我们研究了使用多功能硬币型偏心旋转质量 (ERM) 电机产生的高频振动刺激来分类 SSSEP 的可行性。七名健康受试者用振动刺激左、右手食指执行选择性注意 (SA) 任务。我们测试了三种 EEG 特征提取方法,随后是支持向量机 (SVM) 分类器:共同空间模式 (CSP)、滤波组 CSP (FBCSP) 和 FBCSP 后的基于互信息的最佳个体特征 (MIBIF) 选择。结果表明,FBCSP 在分类左右手 SA 任务时的性能最高,为 71.5 ± 2.5%,优于其他两种方法 (即 CSP 和 FBCSP-MIBIF)。基于我们的发现和方法,使用低成本硬币电机和基于 FBCSP 的特征选择的高频振动刺激可以潜在地应用于开发实用的 SSSEP 为基础的 BCI 系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bab9/9436568/a9a103ba9589/BMRI2022-4100381.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验