Suppr超能文献

使用肺部力学的非线性自回归模型预测高气道压力。

Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics.

机构信息

Department of Mechanical Engineering, University of Canterbury, Private bag 4800, Christchurch, 8140, New Zealand.

Hamilton Medical, Via Crusch 8, 7402, Bonaduz, Switzerland.

出版信息

Biomed Eng Online. 2017 Nov 2;16(1):126. doi: 10.1186/s12938-017-0415-y.

Abstract

BACKGROUND

For mechanically ventilated patients with acute respiratory distress syndrome (ARDS), suboptimal PEEP levels can cause ventilator induced lung injury (VILI). In particular, high PEEP and high peak inspiratory pressures (PIP) can cause over distension of alveoli that is associated with VILI. However, PEEP must also be sufficient to maintain recruitment in ARDS lungs. A lung model that accurately and precisely predicts the outcome of an increase in PEEP may allow dangerous high PIP to be avoided, and reduce the incidence of VILI.

METHODS AND RESULTS

Sixteen pressure-flow data sets were collected from nine mechanically ventilated ARDs patients that underwent one or more recruitment manoeuvres. A nonlinear autoregressive (NARX) model was identified on one or more adjacent PEEP steps, and extrapolated to predict PIP at 2, 4, and 6 cmHO PEEP horizons. The analysis considered whether the predicted and measured PIP exceeded a threshold of 40 cmHO. A direct comparison of the method was made using the first order model of pulmonary mechanics (FOM(I)). Additionally, a further, more clinically appropriate method for the FOM was tested, in which the FOM was trained on a single PEEP prior to prediction (FOM(II)). The NARX model exhibited very high sensitivity (> 0.96) in all cases, and a high specificity (> 0.88). While both FOM methods had a high specificity (> 0.96), the sensitivity was much lower, with a mean of 0.68 for FOM(I), and 0.82 for FOM(II).

CONCLUSIONS

Clinically, false negatives are more harmful than false positives, as a high PIP may result in distension and VILI. Thus, the NARX model may be more effective than the FOM in allowing clinicians to reduce the risk of applying a PEEP that results in dangerously high airway pressures.

摘要

背景

对于患有急性呼吸窘迫综合征(ARDS)的机械通气患者,低水平的呼气末正压(PEEP)可能导致呼吸机相关性肺损伤(VILI)。特别是,高 PEEP 和高吸气峰压(PIP)可导致肺泡过度膨胀,与 VILI 相关。然而,PEEP 也必须足以维持 ARDS 肺的复张。一种能够准确和精确预测 PEEP 增加结果的肺模型,可以避免危险的高 PIP,并降低 VILI 的发生率。

方法和结果

从 9 名接受一次或多次复张手法的机械通气 ARDS 患者中收集了 16 个压力-流量数据集。在一个或多个相邻的 PEEP 水平上识别了一个非线性自回归(NARX)模型,并进行外推以预测 2、4 和 6 cmH2O PEEP 水平的 PIP。分析考虑了预测和测量的 PIP 是否超过 40 cmH2O 的阈值。使用肺力学一阶模型(FOM(I))对该方法进行了直接比较。此外,还测试了一种更适合临床的 FOM 方法,该方法在预测前对单个 PEEP 进行训练(FOM(II))。NARX 模型在所有情况下均表现出非常高的灵敏度(>0.96)和高特异性(>0.88)。虽然两种 FOM 方法均具有高特异性(>0.96),但灵敏度要低得多,FOM(I)的平均灵敏度为 0.68,FOM(II)的平均灵敏度为 0.82。

结论

临床上,假阴性比假阳性更有害,因为高 PIP 可能导致膨胀和 VILI。因此,与 FOM 相比,NARX 模型可能更有效地允许临床医生降低应用 PEEP 导致气道压力过高的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f9e/5668972/542d60fd8aa9/12938_2017_415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验