Suppr超能文献

在构建患者报告结局问卷时,测量与预测:我们能否两全其美?

Measurement versus prediction in the construction of patient-reported outcome questionnaires: can we have our cake and eat it?

机构信息

Research Institute of Child Development and Education, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS, Amsterdam, The Netherlands.

出版信息

Qual Life Res. 2018 Jul;27(7):1673-1682. doi: 10.1007/s11136-017-1720-4. Epub 2017 Nov 2.

Abstract

BACKGROUND

Two important goals when using questionnaires are (a) measurement: the questionnaire is constructed to assign numerical values that accurately represent the test taker's attribute, and (b) prediction: the questionnaire is constructed to give an accurate forecast of an external criterion. Construction methods aimed at measurement prescribe that items should be reliable. In practice, this leads to questionnaires with high inter-item correlations. By contrast, construction methods aimed at prediction typically prescribe that items have a high correlation with the criterion and low inter-item correlations. The latter approach has often been said to produce a paradox concerning the relation between reliability and validity [1-3], because it is often assumed that good measurement is a prerequisite of good prediction.

OBJECTIVE

To answer four questions: (1) Why are measurement-based methods suboptimal for questionnaires that are used for prediction? (2) How should one construct a questionnaire that is used for prediction? (3) Do questionnaire-construction methods that optimize measurement and prediction lead to the selection of different items in the questionnaire? (4) Is it possible to construct a questionnaire that can be used for both measurement and prediction?

ILLUSTRATIVE EXAMPLE

An empirical data set consisting of scores of 242 respondents on questionnaire items measuring mental health is used to select items by means of two methods: a method that optimizes the predictive value of the scale (i.e., forecast a clinical diagnosis), and a method that optimizes the reliability of the scale. We show that for the two scales different sets of items are selected and that a scale constructed to meet the one goal does not show optimal performance with reference to the other goal.

DISCUSSION

The answers are as follows: (1) Because measurement-based methods tend to maximize inter-item correlations by which predictive validity reduces. (2) Through selecting items that correlate highly with the criterion and lowly with the remaining items. (3) Yes, these methods may lead to different item selections. (4) For a single questionnaire: Yes, but it is problematic because reliability cannot be estimated accurately. For a test battery: Yes, but it is very costly. Implications for the construction of patient-reported outcome questionnaires are discussed.

摘要

背景

使用问卷时有两个重要目标:(a)测量:问卷的构建旨在分配准确表示测试者属性的数值;(b)预测:问卷的构建旨在对外部标准进行准确预测。旨在测量的构建方法规定项目应该是可靠的。在实践中,这会导致项目之间相关性很高的问卷。相比之下,旨在预测的构建方法通常规定项目与标准高度相关,而项目之间的相关性较低。后者方法经常被说成是可靠性和有效性之间的关系产生悖论[1-3],因为人们通常认为良好的测量是良好预测的前提。

目的

回答四个问题:(1)为什么基于测量的方法对于用于预测的问卷不是最优的?(2)应该如何构建用于预测的问卷?(3)优化测量和预测的问卷构建方法是否会导致问卷中选择不同的项目?(4)是否可以构建既可以用于测量又可以用于预测的问卷?

示例说明

使用包含 242 名受访者在心理健康问卷项目上的得分的实证数据集,通过两种方法选择项目:一种方法是优化量表的预测值(即预测临床诊断),另一种方法是优化量表的可靠性。我们表明,对于这两个量表,选择了不同的项目集,并且构建为满足一个目标的量表在参考另一个目标时不会表现出最佳性能。

讨论

答案如下:(1)因为基于测量的方法倾向于通过降低预测有效性来最大化项目之间的相关性。(2)通过选择与标准高度相关且与其余项目低度相关的项目。(3)是的,这些方法可能导致不同的项目选择。(4)对于单个问卷:是,但由于可靠性无法准确估计,因此存在问题。对于测试电池:是,但成本非常高。讨论了对患者报告结果问卷构建的影响。

相似文献

引用本文的文献

4
The prevalence of the academic learning difficulties: An observation tool.学术学习困难的患病率:一种观察工具。
Heliyon. 2021 Oct 12;7(10):e08164. doi: 10.1016/j.heliyon.2021.e08164. eCollection 2021 Oct.
9
Introduction to special section: test construction.特刊介绍:测试构建
Qual Life Res. 2018 Jul;27(7):1671-1672. doi: 10.1007/s11136-018-1886-4.

本文引用的文献

2
Using Confidence Intervals for Assessing Reliability of Real Tests.使用置信区间评估真实测试的可靠性。
Assessment. 2019 Oct;26(7):1207-1216. doi: 10.1177/1073191117737375. Epub 2017 Oct 31.
5
A more nuanced view of reliability: specificity in the trait hierarchy.更细致的可靠性观点:特质层次中的特异性。
Pers Soc Psychol Rev. 2015 May;19(2):97-112. doi: 10.1177/1088868314541857. Epub 2014 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验