Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University , Gwangju 61186, Republic of Korea.
School of Electrical and Electronic Engineering, Yonsei University , Seodaemun-gu, Seoul 120-749, Republic of Korea.
ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40252-40264. doi: 10.1021/acsami.7b12248. Epub 2017 Nov 13.
This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS) as its electrode. While molybdenum hexacarbonyl [Mo(CO)] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS, HS plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS film on a Si/SiO substrate. While stoichiometric MoS with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS phase of the as-grown film. A comparative study of ALD-grown MoS as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS@3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm was achieved for MoS@3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm. Moreover, the ALD-grown MoS@3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm. Finally, this directly grown MoS electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge-discharge cycles which must invoke the research community to further explore the potential of ALD for such applications.
本文努力通过制备二硫化钼 (MoS) 作为电极来确立原子层沉积 (ALD) 技术在超级电容器领域的潜力。在使用六羰基钼 [Mo(CO)] 作为新型前驱体在低温下合成 ALD 生长的 MoS 的同时,HS 等离子体有助于在 200°C 下沉积其多晶相。进行了详细的一系列原位表征,如 X 射线衍射 (XRD)、拉曼光谱、X 射线光电子能谱 (XPS) 等,以研究 Si/SiO 衬底上生长的 MoS 薄膜。虽然 XPS 表明 MoS 具有非常少的 C 和 O 杂质,但 XRD 和高分辨率透射电子显微镜分析证实了生长膜的具有择优取向的多晶 h-MoS 相。在二维不锈钢和三维 (3D) Ni 泡沫基底上作为超级电容器电极的 ALD 生长 MoS 的比较研究清楚地反映了 ALD 在 3D 支架层上生长均匀和保形电极材料的优势和潜力。循环伏安测量表明 MoS 电极表面的双电层电容和法拉第反应贡献的电容。还发现了最佳的 ALD 循环次数,以实现这种 MoS@3D-Ni-泡沫电极的最大电容。在电流密度为 3 mA/cm 时,通过 400 次 ALD 循环生长的 MoS@3D-Ni-泡沫获得了 3400 mF/cm 的创纪录的面电容。此外,ALD 生长的 MoS@3D-Ni-泡沫复合电极即使在 50 mA/cm 的高电流密度下也保持高的面电容。最后,ALD 直接在 3D-Ni-泡沫上生长的 MoS 电极在 4500 次充放电循环中表现出超过 80%的高循环稳定性,这必将引起研究界进一步探索 ALD 在这些应用中的潜力。